views:

1848

answers:

7

I recently inherited a small Java program that takes information from a large database, does some processing and produces a detailed image regarding the information. The original author wrote the code using a single thread, then later modified it to allow it to use multiple threads.

In the code he defines a constant;

//  number of threads
public static final int THREADS =  Runtime.getRuntime().availableProcessors();

Which then sets the number of threads that are used to create the image.

I understand his reasoning that the number of threads cannot be greater than the number of available processors, so set it the the amount to get the full potential out of the processor(s). Is this correct? or is there a better way to utilize the full potential of the processor(s)?

EDIT: To give some more clarification, The specific algorithm that is being threaded scales to the resolution of the picture being created, (1 thread per pixel). That is obviously not the best solution though. The work that this algorithm does is what takes all the time, and is wholly mathematical operations, there are no locks or other factors that will cause any given thread to sleep. I just want to maximize the programs CPU utilization to decrease the time to completion.

+3  A: 

The number that your application needs; no more, and no less.

Obviously, if you're writing an application which contains some parallelisable algorithm, then you can probably start benchmarking to find a good balance in the number of threads, but bear in mind that hundreds of threads won't speed up any operation.

If your algorithm can't be parallelised, then no number of additional threads is going to help.

Rob
+5  A: 

On the one hand, you'd like to think Threads == CPU/Cores makes perfect sense. Why have a thread if there's nothing to run it?

The detail boils down to "what are the threads doing". A thread that's idle waiting for a network packet or a disk block is CPU time wasted.

If your threads are CPU heavy, then a 1:1 correlation makes some sense. If you have a single "read the DB" thread that feeds the other threads, and a single "Dump the data" thread and pulls data from the CPU threads and create output, those two could most likely easily share a CPU while the CPU heavy threads keep churning away.

The real answer, as with all sorts of things, is to measure it. Since the number is configurable (apparently), configure it! Run it with 1:1 threads to CPUs, 2:1, 1.5:1, whatever, and time the results. Fast one wins.

Will Hartung
A: 

Yes, that's a perfectly reasonable approach. One thread per processor/core will maximize processing power and minimize context switching. I'd probably leave that as-is unless I found a problem via benchmarking/profiling.

One thing to note is that the JVM does not guarantee availableProcessors() will be constant, so technically, you should check it immediately before spawning your threads. I doubt that this value is likely to change at runtime on typical computers, though.

P.S. As others have pointed out, if your process is not CPU-bound, this approach is unlikely to be optimal. Since you say these threads are being used to generate images, though, I assume you are CPU bound.

Derek Park
A: 

number of processors is a good start; but if those threads do a lot of i/o, then might be better with more... or less.

first think of what are the resources available and what do you want to optimise (least time to finish, least impact to other tasks, etc). then do the math.

sometimes it could be better if you dedicate a thread or two to each i/o resource, and the others fight for CPU. the analisys is usually easier on these designs.

Javier
+1  A: 

The benefit of using threads is to reduce wall-clock execution time of your program by allowing your program to work on a different part of the job while another part is waiting for something to happen (usually I/O). If your program is totally CPU bound adding threads will only slow it down. If it is fully or partially I/O bound, adding threads may help but there's a balance point to be struck between the overhead of adding threads and the additional work that will get accomplished. To make the number of threads equal to the number of processors will yield peak performance if the program is totally, or near-totally CPU-bound.

As with many questions with the word "should" in them, the answer is, "It depends". If you think you can get better performance, adjust the number of threads up or down and benchmark the application's performance. Also take into account any other factors that might influence the decision (if your application is eating 100% of the computer's available horsepower, the performance of other applications will be reduced).

This assumes that the multi-threaded code is written properly etc. If the original developer only had one CPU, he would never have had a chance to experience problems with poorly-written threading code. So you should probably test behaviour as well as performance when adjusting the number of threads.

By the way, you might want to consider allowing the number of threads to be configured at run time instead of compile time to make this whole process easier.

A: 

After seeing your edit, it's quite possible that one thread per CPU is as good as it gets. Your application seems quite parallelizable. If you have extra hardware you can use GridGain to grid-enable your app and have it run on multiple machines. That's probably about the only thing, beyond buying faster / more cores, that will speed it up.

+4  A: 

Threads are fine, but as others have noted, you have to be highly aware of your bottlenecks. Your algorithm sounds like it would be susceptible to cache contention between multiple CPUs - this is particularly nasty because it has the potential to hit the performance of all of your threads (normally you think of using multiple threads to continue processing while waiting for slow or high latency IO operations).

Cache contention is a very important aspect of using multi CPUs to process a highly parallelized algorithm: Make sure that you take your memory utilization into account. If you can construct your data objects so each thread has it's own memory that it is working on, you can greatly reduce cache contention between the CPUs. For example, it may be easier to have a big array of ints and have different threads working on different parts of that array - but in Java, the bounds checks on that array are going to be trying to access the same address in memory, which can cause a given CPU to have to reload data from L2 or L3 cache.

Splitting the data into it's own data structures, and configure those data structures so they are thread local (might even be more optimal to use ThreadLocal - that actually uses constructs in the OS that provide guarantees that the CPU can use to optimize cache.

The best piece of advice I can give you is test, test, test. Don't make assumptions about how CPUs will perform - there is a huge amount of magic going on in CPUs these days, often with counterintuitive results. Note also that the JIT runtime optimization will add an additional layer of complexity here (maybe good, maybe not).

Kevin Day