In XSLT 1.0 the use of FXSL makes such problems easy to solve:
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:f="http://fxsl.sf.net/"
xmlns:ext="http://exslt.org/common"
exclude-result-prefixes="xsl f ext"
>
<xsl:import href="zipWith.xsl"/>
<xsl:output method="text"/>
<xsl:variable name="vMultFun" select="document('')/*/f:mult-func[1]"/>
<xsl:template match="/">
<xsl:call-template name="profitForId"/>
</xsl:template>
<xsl:template name="profitForId">
<xsl:param name="pId" select="1"/>
<xsl:variable name="vrtfProducts">
<xsl:call-template name="zipWith">
<xsl:with-param name="pFun" select="$vMultFun"/>
<xsl:with-param name="pList1" select="/*/*[@repid = $pId]/@amount"/>
<xsl:with-param name="pList2" select="/*/*[@repid = $pId]/@rate"/>
</xsl:call-template>
</xsl:variable>
<xsl:value-of select="sum(ext:node-set($vrtfProducts)/*)"/>
</xsl:template>
<f:mult-func/>
<xsl:template match="f:mult-func" mode="f:FXSL">
<xsl:param name="pArg1"/>
<xsl:param name="pArg2"/>
<xsl:value-of select="$pArg1 * $pArg2"/>
</xsl:template>
</xsl:stylesheet>
When this transformation is applied on the originally posted source XML document, the correct result is produced:
310
In XSLT 2.0 the same solution using FXSL 2.0 can be expressed by an XPath one-liner:
sum(f:zipWith(f:multiply(),
/*/*[xs:decimal(@repid) eq 1]/@amount/xs:decimal(.),
/*/*[xs:decimal(@repid) eq 1]/@rate/xs:decimal(.)
)
)
The whole transformation:
<xsl:stylesheet version="2.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:f="http://fxsl.sf.net/"
exclude-result-prefixes="f xs"
>
<xsl:import href="../f/func-zipWithDVC.xsl"/>
<xsl:import href="../f/func-Operators.xsl"/>
<!-- To be applied on testFunc-zipWith4.xml -->
<xsl:output omit-xml-declaration="yes" indent="yes"/>
<xsl:template match="/">
<xsl:value-of select=
"sum(f:zipWith(f:multiply(),
/*/*[xs:decimal(@repid) eq 1]/@amount/xs:decimal(.),
/*/*[xs:decimal(@repid) eq 1]/@rate/xs:decimal(.)
)
)
"/>
</xsl:template>
</xsl:stylesheet>
Again, this transformation produces the correct answer:
310
Note the following:
The f:zipWith()
function takes as arguments a function fun()
(of two arguments) and two lists of items having the same length. It produces a new list of the same length, whose items are the result of the pair-wise application of fun()
on the corresponding k
-th items of the two lists.
f:zipWith()
as in the expression takes the function f:multiply()
and two sequences of corresponding "ammount
" and "rate
" attributes. The sesult is a sequence, each item of which is the product of the corresponding "ammount
" and "rate
".
Finally, the sum of this sequence is produced.
There is no need to write an explicit recursion and it is also guaranteed that the behind-the scenes recursion used within f:zipWith()
is never going to crash (for all practical cases) with "stack overflow"