Mathematica also provides a number of high-level functions for manipulating algebraic. Among these are Expand
, Apart
and Together
, and Cancel
, though there are quite a few more.
Also, for your specific example of applying the same transformation to both sides of an equation (that is, and expression with the head Equal
), you can use the Thread
function, which works just like your MultBothSides
function, but with a great deal more generality.
In[1]:= expression = 2 a == a b
Out[1]:= 2 a == a b
In[2]:= Thread[expression /a, Equal]
Out[2]:= 2 == b
In[3]:= Thread[expression - c, Equal]
Out[3]:= 2 a - c == a b - c
In either of the presented solutions, it should be relatively easy to see what the step entailed. If you want something a little more explicit, you can write your own function like so:
In[4]:= ApplyToBothSides[f_, eq_Equal] := Map[f, eq]
In[5]:= ApplyToBothSides[4 * #&, expression]
Out[5]:= 8 a == 4 a b
It's a generalization of your MultBothSides
function that takes advantage of the fact that Map
works on expressions with any head, not just head List
. If you're trying to communicate with an audience that is unfamiliar with Mathematica, using these sorts of names can help you communicate more clearly. In a related vein, if you want to use replacement rules as suggested by Ira Baxter, it may be helpful to write out Replace or ReplaceAll instead of using the /.
syntactic sugar.
In[6]:= ReplaceAll[expression, a -> (x + y)]
Out[6]:= 2 (x + y) == b (x + y)
If you think it would be clearer to have the actual equation, instead of the variable name expression
, in your input, and you're using the notebook interface, highlight the word expression
with your mouse, call up the contextual menu, and select "Evaluate in Place".
The notebook interface is also a very pleasant environment for doing "literate programming", so you can also explain any steps that are not immediately obvious in words. I believe this is a good practice when writing mathematical proofs regardless of the medium.