I'm starting to learn about Big-Oh notation.
What is an easy way for finding C and N0 for a given function?
Say, for example:
(n+1)5, or n5+5n4+10n2+5n+1
I know the formal definition for Big-Oh is:
Let f(n) and g(n) be functions mapping nonnegative integers to real numbers. We say that f(n) is O(g(n)) if there is a real constant c > 0 and an integer constant N0 >= 1 such that f(n) <= cg(n) for every integer N > N0.
My question is, what is a good, sure-fire method for picking values for c and N0?
For the given polynomial above (n+1)5, I have to show that it is O(n5). So, how should I pick my c and N0 so that I can make the above definition true without guessing?