If i have a jpeg map with size sizeX, sizeY
and some calibration points on the map (X, Y, Lon, Lat)
What would be the algorithm for calculating the corresponding XY point in the map with a given Longitude / Latitude pair?
If i have a jpeg map with size sizeX, sizeY
and some calibration points on the map (X, Y, Lon, Lat)
What would be the algorithm for calculating the corresponding XY point in the map with a given Longitude / Latitude pair?
There is plenty of information on the Internet about calculating the distance between two pairings of latitude and longitude. We're using those calculations on our public website and they are not trivial to understand/discuss (so I won't try to cover them here). That said, they are easy to implement.
Once you have a function that returns distance, you should be able to caculate the width and height of the map in terms of distance between the corners.
Then you can calculate the horizontal and vertical distance of your point from the top-left corner.
Now you find out what ratio of the map's width is represented by the distance between the left side and your point, apply that ratio to the pixel width and you have the number of pixels between the left side and your point. Repeat for the y-axis.
(Pixels from left side) = (total width in pixels) * ((geocode distance between left and your point) / (geocode distance between left side and right side))
(Pixels from top) = (total height in pixels) * ((geocode distance between top and your point) / (geocode distance between top and bottom))
EDIT: As you research this further you will note that some solutions will present more accurate results than others due to the fact that you are approximating distance between two points on a spherical surface and mapping that on a flat surface. The accuracy decreases as the distance increases. Best advice to you is to try it out first and see if it meets your needs.
There are many different map projection schemes. You would have to know which one(s) are used by your maps.
For more information about map projection algorithms and forward/reverse mapping check out this link. It provides the formulas for a number of common projections.
If using the Equidistant Cylindrical Projection type map, here is what you need to do: