I have built an application that is used to simulate the number of products that a company can produce in different "modes" per month. This simulation is used to aid in finding the optimal series of modes to run in for a month to best meet the projected sales forecast for the month. This application has been working well, until recently when the plant was modified to run in additional modes. It is now possible to run in 16 modes. For a month with 22 work days this yields 9,364,199,760 possible combinations. This is up from 8 modes in the past that would have yielded a mere 1,560,780 possible combinations. The PC that runs this application is on the old side and cannot handle the number of calculations before an out of memory exception is thrown. In fact the entire application cannot support more than 15 modes because it uses integers to track the number of modes and it exceeds the upper limit for an integer. Baring that issue, I need to do what I can to reduce the memory utilization of the application and optimize this to run as efficiently as possible even if it cannot achieve the stated goal of 16 modes. I was considering writing the data to disk rather than storing the list in memory, but before I take on that overhead, I would like to get people’s opinion on the method to see if there is any room for optimization there.
EDIT Based on a suggestion by few to consider something more academic then merely calculating every possible answer, listed below is a brief explanation of how the optimal run (combination of modes) is chosen. Currently the computer determines every possible way that the plant can run for the number of work days that month. For example 3 Modes for a max of 2 work days would result in the combinations (where the number represents the mode chosen) of (1,1), (1,2), (1,3), (2,2), (2,3), (3,3) For each mode a product produces at a different rate of production, for example in mode 1, product x may produce at 50 units per hour where product y produces at 30 units per hour and product z produces at 0 units per hour. Each combination is then multiplied by work hours and production rates. The run that produces numbers that most closely match the forecasted value for each product for the month is chosen. However, because some months the plant does not meet the forecasted value for a product, the algorithm increases the priority of a product for the next month to ensure that at the end of the year the product has met the forecasted value. Since warehouse space is tight, it is important that products not overproduce too much either.
Thank you
private List<List<int>> _modeIterations = new List<List<int>>();
private void CalculateCombinations(int modes, int workDays, string combinationValues)
{
List<int> _tempList = new List<int>();
if (modes == 1)
{
combinationValues += Convert.ToString(workDays);
string[] _combinations = combinationValues.Split(',');
foreach (string _number in _combinations)
{
_tempList.Add(Convert.ToInt32(_number));
}
_modeIterations.Add(_tempList);
}
else
{
for (int i = workDays + 1; --i >= 0; )
{
CalculateCombinations(modes - 1, workDays - i, combinationValues + i + ",");
}
}
}