The TCP/IP stack is part of your kernel. What happens is that you call a helper method which prepares a "kernel trap". This is a special kind of exception which puts the CPU into a mode with more privileges ("kernel mode"). Inside of the trap, the kernel examines the parameters of the exception. One of them is the number of the function to call.
When the function is called, it copies the data into a kernel buffer and prepares everything for the data to be processed. Then it returns from the trap, the CPU restores registers and its original mode and execution of your code resumes.
Some kernel thread will pick up the copy of the data and use the network driver to send it out, do all the error handling, etc.
So, yes, after copying the necessary data, your code resumes and the actual data transfer happens in parallel.
Note that this is for TCP packets. The TCP protocol does all the error handling and handshaking for you, so you can give it all the data and it will know what to do. If there is a problem with the connection, you'll notice only after a while since the TCP protocol can handle short network outages by itself. That means you'll have "sent" some data already before you'll get an error. That means you will get the error code for the first packet only after the Nth call to send()
or when you try to close the connection (the close()
will hang until the receiver has acknowledged all packets).
The UDP protocol doesn't buffer. When the call returns, the packet is on it's way. But it's "fire and forget", so you only know that the driver has put it on the wire. If you want to know whether it has arrived somewhere, you must figure out a way to achieve that yourself. The usual approach is have the receiver send an ack UDP packet back (which also might get lost).