Solutions welcome in any language. :-) I'm looking for the fastest way to obtain the value of pi, as a personal challenge. More specifically I'm using ways that don't involve using #define
d constants like M_PI
, or hard-coding the number in.
The program below tests the various ways I know of. The inline assembly version is, in theory, the fastest option, though clearly not portable; I've included it as a baseline to compare the other versions against. In my tests, with built-ins, the 4 * atan(1)
version is fastest on GCC 4.2, because it auto-folds the atan(1)
into a constant. With -fno-builtin
specified, the atan2(0, -1)
version is fastest.
Here's the main testing program (pitimes.c
):
#include <math.h>
#include <stdio.h>
#include <time.h>
#define ITERS 10000000
#define TESTWITH(x) { \
diff = 0.0; \
time1 = clock(); \
for (i = 0; i < ITERS; ++i) \
diff += (x) - M_PI; \
time2 = clock(); \
printf("%s\t=> %e, time => %f\n", #x, diff, diffclock(time2, time1)); \
}
static inline double
diffclock(clock_t time1, clock_t time0)
{
return (double) (time1 - time0) / CLOCKS_PER_SEC;
}
int
main()
{
int i;
clock_t time1, time2;
double diff;
/* Warmup. The atan2 case catches GCC's atan folding (which would
* optimise the ``4 * atan(1) - M_PI'' to a no-op), if -fno-builtin
* is not used. */
TESTWITH(4 * atan(1))
TESTWITH(4 * atan2(1, 1))
#if defined(__GNUC__) && (defined(__i386__) || defined(__amd64__))
extern double fldpi();
TESTWITH(fldpi())
#endif
/* Actual tests start here. */
TESTWITH(atan2(0, -1))
TESTWITH(acos(-1))
TESTWITH(2 * asin(1))
TESTWITH(4 * atan2(1, 1))
TESTWITH(4 * atan(1))
return 0;
}
And the inline assembly stuff (fldpi.c
), noting that it will only work for x86 and x64 systems:
double
fldpi()
{
double pi;
asm("fldpi" : "=t" (pi));
return pi;
}
And a build script that builds all the configurations I'm testing (build.sh
):
#!/bin/sh
gcc -O3 -Wall -c -m32 -o fldpi-32.o fldpi.c
gcc -O3 -Wall -c -m64 -o fldpi-64.o fldpi.c
gcc -O3 -Wall -ffast-math -m32 -o pitimes1-32 pitimes.c fldpi-32.o
gcc -O3 -Wall -m32 -o pitimes2-32 pitimes.c fldpi-32.o -lm
gcc -O3 -Wall -fno-builtin -m32 -o pitimes3-32 pitimes.c fldpi-32.o -lm
gcc -O3 -Wall -ffast-math -m64 -o pitimes1-64 pitimes.c fldpi-64.o -lm
gcc -O3 -Wall -m64 -o pitimes2-64 pitimes.c fldpi-64.o -lm
gcc -O3 -Wall -fno-builtin -m64 -o pitimes3-64 pitimes.c fldpi-64.o -lm
Apart from testing between various compiler flags (I've compared 32-bit against 64-bit too, because the optimisations are different), I've also tried switching the order of the tests around. The atan2(0, -1)
version still comes out top every time, though.
I'm keen to hear what results you have, as well as improvements to the testing process. :-)