I have to apply a convolution filter on each row of many images. The classic is 360 images of 1024x1024 pixels. In my use case it is 720 images 560x600 pixels.
The problem is that my code is much slower than what is advertised in articles.
I have implemented the naive convolution, and it takes 2m 30s. I then switched to FFT using fftw. I used complex 2 complex, filtering two rows in each transform. I'm now around 20s.
The thing is that articles advertise around 10s and even less for the classic condition. So I'd like to ask the experts here if there could be a faster way to compute the convolution.
Numerical recipes suggest to avoid the sorting done in the dft and adapt the frequency domain filter function accordingly. But there is no code example how this could be done.
Maybe I lose time in copying data. With real 2 real transform I wouldn't have to copy the data into the complexe values. But I have to pad with 0 anyway.
EDIT: see my own answer below for progress feedback and further information on solving this issue.
Question (precise reformulation):
I'm looking for an algorithm or piece of code to apply a very fast convolution to a discrete non periodic function (512 to 2048 values). Apparently the discrete time Fourier transform is the way to go. Though, I'd like to avoid data copy and conversion to complex, and avoid the butterfly reordering.