I want to know how to distribute N independent tasks to exactly M processors on a machine that has L cores, where L>M. I don't want to use all the processors because I still want to have I/O available. The solutions I've tried seem to get distributed to all processors, bogging down the system.
I assume the multiprocessing module is the way to go.
I do numerical simulations. My background is in physics, not computer science, so unfortunately, I often don't fully understand discussions involving standard tasking models like server/client, producer/consumer, etc.
Here are some simplified models that I've tried:
Suppose I have a function run_sim(**kwargs)
(see that further below) that runs a simulation, and a long list of kwargs for the simulations, and I have an 8 core machine.
from multiprocessing import Pool, Process
#using pool
p = Pool(4)
p.map(run_sim, kwargs)
# using process
number_of_live_jobs=0
all_jobs=[]
sim_index=0
while sim_index < len(kwargs)+1:
number_of_live_jobs = len([1 for job in all_jobs if job.is_alive()])
if number_of_live_jobs <= 4:
p = Process(target=run_sim, args=[], kwargs=kwargs[sim_index])
print "starting job", kwargs[sim_index]["data_file_name"]
print "number of live jobs: ", number_of_live_jobs
p.start()
p.join()
all_jobs.append(p)
sim_index += 1
When I look at the processor usage with "top" and then "1", All processors seem to get used anyway in either case. It is not out of the question that I am misinterpreting the output of "top", but if the run_simulation()
is processor intensive, the machine bogs down heavily.
Hypothetical simulation and data:
# simulation kwargs
numbers_of_steps = range(0,10000000, 1000000)
sigmas = [x for x in range(11)]
kwargs = []
for number_of_steps in numbers_of_steps:
for sigma in sigmas:
kwargs.append(
dict(
number_of_steps=number_of_steps,
sigma=sigma,
# why do I need to cast to int?
data_file_name="walk_steps=%i_sigma=%i" % (number_of_steps, sigma),
)
)
import random, time
random.seed(time.time())
# simulation of random walk
def run_sim(kwargs):
number_of_steps = kwargs["number_of_steps"]
sigma = kwargs["sigma"]
data_file_name = kwargs["data_file_name"]
data_file = open(data_file_name+".dat", "w")
current_position = 0
print "running simulation", data_file_name
for n in range(int(number_of_steps)+1):
data_file.write("step number %i position=%f\n" % (n, current_position))
random_step = random.gauss(0,sigma)
current_position += random_step
data_file.close()