I don't know of a good way. It certainly can be done the hard way, here is a single-precision example totally within JavaScript:
js> a = 0x41973333
1100428083
js> (a & 0x7fffff | 0x800000) * 1.0 / Math.pow(2,23) * Math.pow(2, ((a>>23 & 0xff) - 127))
18.899999618530273
A production implementation should consider that most of the fields have magic values, typically implemented by specifying a special interpretation for what would have been the largest or smallest. So, detect NaN
s and infinities. The above example should be checking for negatives. (a & 0x80000000)
Update: Ok, I've got it for double's, too. You can't directly extend the above technique because the internal JS representation is a double, and so by its definition it can handle at best a bit string of length 52, and it can't shift by more than 32 at all.
Ok, to do double you first chop off as a string the low 8 digits or 32 bits; process them with a separate object. Then:
js> a = 0x40725082
1081233538
js> (a & 0xfffff | 0x100000) * 1.0 / Math.pow(2, 52 - 32) * Math.pow(2, ((a >> 52 - 32 & 0x7ff) - 1023))
293.03173828125
js>
I kept the above example because it's from the OP. A harder case is when the low 32-bits have a value. Here is the conversion of 0x40725082deadbeef, a full-precision double:
js> a = 0x40725082
1081233538
js> b = 0xdeadbeef
3735928559
js> e = (a >> 52 - 32 & 0x7ff) - 1023
8
js> (a & 0xfffff | 0x100000) * 1.0 / Math.pow(2,52-32) * Math.pow(2, e) +
b * 1.0 / Math.pow(2, 52) * Math.pow(2, e)
293.0319506442019
js>
There are some obvious subexpressions you can factor out but I've left it this way so you can see how it relates to the format.