I'm interested in finding for a particular Numpy type (e.g. np.int64, np.uint32, np.float32, etc.) what the range of all possible valid values is (e.g. np.int32 can store numbers up to 2**31-1). Of course, I guess one can theoretically figure this out for each type, but is there a way to do this at run time to ensure more portable code?
+5
A:
Quoting from a numpy dicussion list:
That kind of information is available via numpy.finfo() and numpy.iinfo():
In [12]: finfo('d').max
Out[12]: 1.7976931348623157e+308
In [13]: iinfo('i').max
Out[13]: 2147483647
In [14]: iinfo(uint8).max
Out[14]: 255
The link is here: link to numpy discussion group page
perimosocordiae
2009-11-01 23:19:26
+2
A:
You can use numpy.iinfo(arg).max
to find the max value for integer types of arg
, and numpy.finfo(arg).max
to find the max value for float types of arg
.
>>> numpy.iinfo(numpy.uint64).min
0
>>> numpy.iinfo(numpy.uint64).max
18446744073709551615L
>>> numpy.finfo(numpy.float64).max
1.7976931348623157e+308
>>> numpy.finfo(numpy.float64).min
-1.7976931348623157e+308
iinfo
only offers min
and max
, but finfo
also offers useful values such as eps
(the smallest number > 0 representable) and resolution
(the approximate decimal number resolution of the type of arg
).
Mark Rushakoff
2009-11-01 23:20:55