So, judging purely by the criteria set forth in the question, the build system that seems like the best fit is probably waf - pure Python, provides support for C++ and other languages, general, powerful, not a DSL.
However, from my personal experience, I prefer CMake for C++ projects. (I tried CMake, SCons, and waf, and liked them in roughly that order). CMake is a general solution, but it has built-in support for C++ that makes it nicer than a more generic solution when you're actually doing C++.
CMake's build model for C++ is more declarative and less imperative, and thus, to me, easier to use. The CMake language syntax isn't great, but a declarative build with odd syntax beats an imperative build in Python. Of the three, CMake also seems to have the best support for "advanced" things like precompiled headers. Setting up precompiled headers reduced my rebuild time by about 70%.
Other pluses for CMake include decent documentation and a sizable community. Many open source libraries have CMake build files either in-tree or provided by the CMake community. There are major projects that already use CMake (OGRE comes to mind), and other major projects, like Boost and LLVM, are in the process of moving to CMake.
Part of the issue I found when experimenting with build systems is that I was trying to build a NPAPI plugin on OS X, and it turns out that very few build systems are set up to give XCode the exact combination of flags required to do so. CMake, recognizing that XCode is a complex and moving target, provides a hook for manually setting commands in generated XCode projects (and Visual Studio, I think). This is Very Smart as far as I'm concerned.
Whether you're building a library or an application may also determine which build system is best. Boost still uses a jam-based system, in part because it provides the most comprehensive support for managing build types that are more complex than "Debug" and "Release." Most boost libraries have five or six different versions, especially on Windows, anticipating people needing compatible libraries that link against different versions of the CRT.
I didn't have any problems with CMake on Windows, but of course your mileage may vary. There's a decent GUI for setting up build dependencies, though it's clunky to use for rebuilds. Luckily there's also a command-line client. What I've settled on so far is to have a thin wrapper Makefile that invokes CMake from an objdir; CMake then generates Makefiles in the objdir, and the original Makefile uses them to do the build. This ensures that people don't accidentally invoke CMake from the source directory and clutter up their repository. Combined with MinGW, this "CMake sandwich" provides a remarkably consistent cross-platform build experience!