Is LINQ a kind of Object-Relational Mapper?
LINQ to SQL (part of Visual Studio 2008) is an OR Mapper.
LINQ is a new query language that can be used to query many different types of sources.
Linq To SQL using the dbml designer yes, otherwise Linq is just a set of extension methods for Enumerables.
LINQ in itself is a set of language extensions to aid querying, readability and reduce code. LINQ to SQL is a kind of OR Mapper, but it isn't particularly powerful. The Entity Framework is often referred to as an OR Mapper, but it does quite a lot more.
There are several other LINQ to X implementations around, including LINQ to NHibernate and LINQ to LLBLGenPro that offer OR Mapping and supporting frameworks in a broadly similar fashion to the Entity Framework.
If you are just learning LINQ though, I'd recommend you stick to LINQ to Objects to get a feel for it, rather than diving into one of the more complicated flavours :-)
LINQ itself is not a ORM. LINQ is the language features and methods that exist in allowing you to query objects like SQL.
"LINQ to SQL" is a provider that allows us to use LINQ against SQL strongly-typed objects.
LINQ is not an ORM at all. LINQ is a way of querying "stuff", and can be more or less seen as a SQL-like language extension for different things (IEnumerables).
There are various types of "stuff" that can be queried, among them SQL Server databases. This is called LINQ-to-SQL. The way it works is that it generates (implicit) classes based on the structure of the DB and your query. In this sense it works much more like a code generator.
LINQ-to-SQL is not an ORM because it doesn't try at all to solve the object-relational impedance mismatch. In an ORM you design the classes and then either map them manually to tables or let the ORM generate the database. If you then change the database for whatever reason (typically refactoring, renormalization, denormalization), many times you are able to keep the classes as they are by changing the mapping.
LINQ-to-SQL does nothing of the sort. Your LINQ queries will be tightly coupled to the database structure. If you change the DB, you will probably have to change the LINQ as well.
I think a good test to ascertain whether a platform or code block displays the characteristics of an O/R-M is simply:
With his solution hat on, does the developer(s) (or his/her code generator) have any direct, unabstracted knowledge of what's inside the database?With this criterion, the answer for differing LINQ implementations can be
Yes, knowledge of the database schema is entirely contained within the roll-your-own, LINQ utilizing O/R-M code layeror
No, knowledge of the database schema is scattered throughout the applicationFurther, I'd extend this characterization to three simple levels of O/R-M.
1. Abandonment.It's a small app w/ a couple of developers and the object/data model isn't that complex and doesn't change very often. The small dev team can stay on top of it.2. Roll your own in the data access layer.With some managable refactoring in a data access layer, the desired O/R-M functionality can be effected in an intermediate layer by the relatively small dev team. Enough to keep the entire team on the same page.3. Enterprise-level O/R-M specification defining/overhead introducing tools.At some level of complexity, the need to keep all devs on the same page just swamps any overhead introduced by the formality. No need to reinvent the wheel at this level of complexity. N-hibernate or the (rough) V1.0 Entity Framework are examples of this scale.
For a richer classification, from which I borrowed and simplified, see Ted Neward's classic post at
http://blogs.tedneward.com/2006/06/26/The+Vietnam+Of+Computer+Science.aspx
where he classifies O/R-M treatments (or abdications) as
1. Abandonment.Developers simply give up on objects entirely, and return to a programming model that doesn't create the object/relational impedance mismatch. While distasteful, in certain scenarios an object-oriented approach creates more overhead than it saves, and the ROI simply isn't there to justify the cost of creating a rich domain model. ([Fowler] talks about this to some depth.) This eliminates the problem quite neatly, because if there are no objects, there is no impedance mismatch.2. Wholehearted acceptance.Developers simply give up on relational storage entirely, and use a storage model that fits the way their languages of choice look at the world. Object-storage systems, such as the db4o project, solve the problem neatly by storing objects directly to disk, eliminating many (but not all) of the aforementioned issues; there is no "second schema", for example, because the only schema used is that of the object definitions themselves. While many DBAs will faint dead away at the thought, in an increasingly service-oriented world, which eschews the idea of direct data access but instead requires all access go through the service gateway thus encapsulating the storage mechanism away from prying eyes, it becomes entirely feasible to imagine developers storing data in a form that's much easier for them to use, rather than DBAs.3. Manual mapping.Developers simply accept that it's not such a hard problem to solve manually after all, and write straight relational-access code to return relations to the language, access the tuples, and populate objects as necessary. In many cases, this code might even be automatically generated by a tool examining database metadata, eliminating some of the principal criticism of this approach (that being, "It's too much code to write and maintain").4. Acceptance of O/R-M limitations.Developers simply accept that there is no way to efficiently and easily close the loop on the O/R mismatch, and use an O/R-M to solve 80% (or 50% or 95%, or whatever percentage seems appropriate) of the problem and make use of SQL and relational-based access (such as "raw" JDBC or ADO.NET) to carry them past those areas where an O/R-M would create problems. Doing so carries its own fair share of risks, however, as developers using an O/R-M must be aware of any caching the O/R-M solution does within it, because the "raw" relational access will clearly not be able to take advantage of that caching layer.5. Integration of relational concepts into the languages.Developers simply accept that this is a problem that should be solved by the language, not by a library or framework. For the last decade or more, the emphasis on solutions to the O/R problem have focused on trying to bring objects closer to the database, so that developers can focus exclusively on programming in a single paradigm (that paradigm being, of course, objects). Over the last several years, however, interest in "scripting" languages with far stronger set and list support, like Ruby, has sparked the idea that perhaps another solution is appropriate: bring relational concepts (which, at heart, are set-based) into mainstream programming languages, making it easier to bridge the gap between "sets" and "objects". Work in this space has thus far been limited, constrained mostly to research projects and/or "fringe" languages, but several interesting efforts are gaining visibility within the community, such as functional/object hybrid languages like Scala or F#, as well as direct integration into traditional O-O languages, such as the LINQ project from Microsoft for C# and Visual Basic. One such effort that failed, unfortunately, was the SQL/J strategy; even there, the approach was limited, not seeking to incorporate sets into Java, but simply allow for embedded SQL calls to be preprocessed and translated into JDBC code by a translator.6. Integration of relational concepts into frameworks.Developers simply accept that this problem is solvable, but only with a change of perspective. Instead of relying on language or library designers to solve this problem, developers take a different view of "objects" that is more relational in nature, building domain frameworks that are more directly built around relational constructs. For example, instead of creating a Person class that holds its instance data directly in fields inside the object, developers create a Person class that holds its instance data in a RowSet (Java) or DataSet (C#) instance, which can be assembled with other RowSets/DataSets into an easy-to-ship block of data for update against the database, or unpacked from the database into the individual objects.