Daniel's answer nicely sums up the correct way to do this, as well as why it works. Since he already covered that angle, I'll attempt to answer your broader question (regarding language design)...
Wherever possible, Scala strives to avoid adding language features in favor of handling things through existing mechanisms. For example, Scala doesn't include a break
statement. However, it's almost trivial to roll one of your own as a library:
case object BreakException extends RuntimeException
def break = throw BreakException
def breakable(body: =>Unit) = try {
body
} catch {
case BreakException => ()
}
This can be used in the following way:
breakable {
while (true) {
if (atTheEnd) {
break
}
// do something normally
}
}
(note: this is included in the standard library for Scala 2.8)
Multiple assignment syntaxes such as are allowed by languages like Ruby (e.g. x = 1, y = 2, z = 3
) fall into the category of "redundant syntax". When Scala already has a feature which enables a particular pattern, it avoids adding a new feature just to handle a special case of that pattern. In this case, Scala already has pattern matching (a general feature) which can be used to handle multiple assignment (by using the tuple trick outlined in other answers). There is no need for it to handle that particular special case in a separate way.
On a slightly different aside, it's worth noting that C's (and thus, Java's) multiple assignment syntax is also a special case of another, more general feature. Consider:
int x = y = z = 1;
This exploits the fact that assignment returns the value assigned in C-derivative languages (as well as the fact that assignment is right-associative). This is not the case in Scala. In Scala, assignment returns Unit
. While this does have some annoying drawbacks, it is more theoretically valid as it emphasizes the side-effecting nature of assignment directly in its type.