Hi,
Typically, the databases are designed as below to allow multiple types for an entity.
Entity Name Type Additional info
Entity name can be something like account number and type could be like savings,current etc in a bank database for example.
Mostly, type will be some kind of string. There could be additional information associated with an entity type.
Normally queries will be posed like this. Find account numbers of this particular type? Find account numbers of type X, having balance greater than 1 million?
To answer these queries, query analyzer will scan the index if the index is associated with a particular column. Otherwise, it will do a full scan of all the rows.
I am thinking about the below optimization. Why not we store the hash or integral value of each column data in the actual table such that the ordering property is maintained, so that it will be easy for comparison.
It has below advantages. 1. Table size will be lot less because we will be storing small size values for each column data. 2. We can construct a clustered B+ tree index on the hash values for each column to retrieve the corresponding rows matching or greater or smaller than some value. 3. The corresponding values can be easily retrieved by having B+ tree index in the main memory and retrieving the corresponding values. 4. Infrequent values will never need to retrieved.
I am still having more optimizations in my mind. I will post those based on the feedback to this question.
I am not sure if this is already implemented in database, this is just a thought.
Thank you for reading this.
-- Bala
Update:
I am not trying to emulate what the database does. Normally indexes are created by the database administrator. I am trying to propose a physical schema by having indexes on all the fields in the database, so that database table size is reduced and its easy to answer few queries.
Updates:(Joe's answer)
How does adding indexes to every field reduce the size of the database? You still have to store all of the true values in addition to the hash; we don't just want to query for existence but want to return the actual data.
In a typical table, all the physical data will be stored. But now by generating a hash value on each column data, I am only storing the hash value in the actual table. I agree that its not reducing the size of the database, but its reducing the size of the table. It will be useful when you don't need to return all the column values.
Most RDBMSes answer most queries efficiently now (especially with key indices in place). I'm having a hard time formulating scenarios where your database would be more efficient and save space.
There can be only one clustered index on a table and all other indexes have to unclustered indexes. With my approach I will be having clustered index on all the values of the database. It will improve query performance.
Putting indexes within the physical data -- that doesn't really make sense. The key to indexes' performance is that each index is stored in sorted order. How do you propose doing that across any possible field if they are only stored once in their physical layout? Ultimately, the actual rows have to be sorted by something (in SQL Server, for example, this is the clustered index)?
The basic idea is that instead of creating a separate table for each column for efficient access, we are doing it at the physical level.
Now the table will look like this.
Row1 - OrderedHash(Column1),OrderedHash(Column2),OrderedHash(Column3)