There's different ways to picture one. One I find useful is the oracle model. Did you ever see the Far Side cartoon where a derivation on the blackboard has "Here a miracle occurs" as one of the intermediate steps? In this version of a NDTM, when you need to choose something, the oracle writes the correct version on the right part of the tape. (This is taken from Garey and Johnson, Computers and Intractability, their classic book on NP-complete problems.) You aren't allowed to assume you've got the right one, though, and there may not be a correct one.
Therefore, when you non-deterministically guess a bijection, you're getting the correct bijection for your purposes, provided one exists.
It isn't a good basis for an algorithm, since the complexity of implementing a non-deterministic Turing machine is basically exponential in the nondeterministic states, and the algorithmic equivalent of the nondeterministic guess is to try every possible bijection.
From a theoretical point of view, I'd translate it as "If there is a bijection such that....". From an algorithmic point of view, find another book, or another chapter of the same book, since that approach is useless for even moderately large graphs.