Is there a good library to numericly solve an LCP in python ?
Edit: I need a working python code example because most libraries seem to only solve quadratic problems and i have problems converting an LCP into a QP.
Is there a good library to numericly solve an LCP in python ?
Edit: I need a working python code example because most libraries seem to only solve quadratic problems and i have problems converting an LCP into a QP.
Take a look at the scikit OpenOpt. It has an example of doing quadratic programming and I believe that it goes beyond SciPy's optimization routines. NumPy is required to use OpenOpt. I believe that the wikipedia page that you pointed us to for LCP describes how to solve a LCP by QP.
For quadratic programming with Python, I use the qp
-solver from cvxopt
. Using this, it is straightforward to translate the LCP problem into a QP problem (see Wikipedia). Example:
from cvxopt import matrix, spmatrix
from cvxopt.blas import gemv
from cvxopt.solvers import qp
def append_matrix_at_bottom(A, B):
l = []
for x in xrange(A.size[1]):
for i in xrange(A.size[0]):
l.append(A[i+x*A.size[0]])
for i in xrange(B.size[0]):
l.append(B[i+x*B.size[0]])
return matrix(l,(A.size[0]+B.size[0],A.size[1]))
M = matrix([[ 4.0, 6, -4, 1.0 ],
[ 6, 1, 1.0, 2.0 ],
[-4, 1.0, 2.5, -2.0 ],
[ 1.0, 2.0, -2.0, 1.0 ]])
q = matrix([12, -10, -7.0, 3])
I = spmatrix(1.0, range(M.size[0]), range(M.size[1]))
G = append_matrix_at_bottom(-M, -I) # inequality constraint G z <= h
h = matrix([x for x in q] + [0.0 for _x in range(M.size[0])])
sol = qp(2.0 * M, q, G, h) # find z, w, so that w = M z + q
if sol['status'] == 'optimal':
z = sol['x']
w = matrix(q)
gemv(M, z, w, alpha=1.0, beta=1.0) # w = M z + q
print(z)
print(w)
else:
print('failed')
Please note: