views:

330

answers:

1

I'm a novice OCaml programmer and thought I would throw myself into the deep end by attempting to implement a very tricky algorithm. I'm open to all criticisms great and small be they stylistic or security or performance related.

One criticism that I'm already aware of is that the algorithm requires the entire message to fit in memory (whereas the reference implementation of SHA256 can process a block at a time).

I'm especially concerned about if any of the recursive-functions are not tail-recursive.

I have tested the code and it does produce proper message digests on x86_64 Linux.

Thanks in advance for your consideration.

Edit:

Should nothing jump out at you please don't spend too much time here. I'm looking for obviously broken behavior, not rewrites.

let as_bytes bits =
  match (bits mod 8) with
    | 0 -> (bits / 8)
    | _ -> failwith "as_bytes: bits must be multiple of 8"
let as_bits bytes = bytes * 8
let k = [|
    0x428a2f98l; 0x71374491l; 0xb5c0fbcfl; 0xe9b5dba5l;
    0x3956c25bl; 0x59f111f1l; 0x923f82a4l; 0xab1c5ed5l;
    0xd807aa98l; 0x12835b01l; 0x243185bel; 0x550c7dc3l;
    0x72be5d74l; 0x80deb1fel; 0x9bdc06a7l; 0xc19bf174l;
    0xe49b69c1l; 0xefbe4786l; 0x0fc19dc6l; 0x240ca1ccl;
    0x2de92c6fl; 0x4a7484aal; 0x5cb0a9dcl; 0x76f988dal;
    0x983e5152l; 0xa831c66dl; 0xb00327c8l; 0xbf597fc7l;
    0xc6e00bf3l; 0xd5a79147l; 0x06ca6351l; 0x14292967l;
    0x27b70a85l; 0x2e1b2138l; 0x4d2c6dfcl; 0x53380d13l;
    0x650a7354l; 0x766a0abbl; 0x81c2c92el; 0x92722c85l;
    0xa2bfe8a1l; 0xa81a664bl; 0xc24b8b70l; 0xc76c51a3l;
    0xd192e819l; 0xd6990624l; 0xf40e3585l; 0x106aa070l;
    0x19a4c116l; 0x1e376c08l; 0x2748774cl; 0x34b0bcb5l;
    0x391c0cb3l; 0x4ed8aa4al; 0x5b9cca4fl; 0x682e6ff3l;
    0x748f82eel; 0x78a5636fl; 0x84c87814l; 0x8cc70208l;
    0x90befffal; 0xa4506cebl; 0xbef9a3f7l; 0xc67178f2l
  |]
  let hash s =
    let add_int32 x y = Int32.add x y in

    let left_int32 x n = Int32.shift_left x n in
    let right_int32 x n = Int32.shift_right_logical x n in
    let or_int32 x y = Int32.logor x y in
    let xor_int32 x y = Int32.logxor x y in
    let and_int32 x y = Int32.logand x y in
    let not_int32 x = Int32.lognot x in

    let rotate x n = (or_int32 (right_int32 x n) (left_int32 x (32 - n))) in
    let shift x n = right_int32 x n in
    let ch x y z = xor_int32 (and_int32 x y) (and_int32 (not_int32 x) z) in
    let maj x y z = (xor_int32 (and_int32 x y) (xor_int32 (and_int32 x z) (and_int32 y z))) in
    let sum0 x = (xor_int32 (rotate x  2) (xor_int32 (rotate x 13) (rotate x 22))) in
    let sum1 x = (xor_int32 (rotate x  6) (xor_int32 (rotate x 11) (rotate x 25))) in
    let rh00 x = (xor_int32 (rotate x  7) (xor_int32 (rotate x 18) (shift  x  3))) in
    let rh01 x = (xor_int32 (rotate x 17) (xor_int32 (rotate x 19) (shift  x 10))) in

    let as_bytes bits =
      match (bits mod 8) with
        | 0 -> (bits / 8)
        | _ -> failwith "as_bytes: bits must be multiple of 8"
    in
    let as_bits bytes = bytes * 8 in
    let sha = [|
      0x6a09e667l;
      0xbb67ae85l;
      0x3c6ef372l;
      0xa54ff53al;
      0x510e527fl;
      0x9b05688cl;
      0x1f83d9abl;
      0x5be0cd19l
    |]
    in
    let message = Buffer.create (as_bytes 512) in (* smallest possible buffer is at least 512 bits *)
      begin
        Buffer.add_string message s;
        let original_length = as_bits (Buffer.length message) in 
        Buffer.add_char message '\x80'; (* append '1' bit *)
          let pad_start = as_bits (Buffer.length message) in
          let pad_blocks = if (original_length mod 512) < 448 then 1 else 2 in
          let message_length = ((original_length / 512) + pad_blocks) * 512 in
            begin (* appending k bits of 0 (where message_length-64 is our k) *)
              for i = as_bytes pad_start to (as_bytes (message_length - (as_bytes  64)))-8 do
                Buffer.add_char message '\x00'
              done;
              Buffer.add_buffer message (Bin.pack64 (Int64.of_int original_length))
            end
      end;
      let rec process_block i blocks =
        let array_of_block i = 
          let boff = i*(as_bytes 512) in
          let to_int32 x = (Int32.of_int (int_of_char x)) in
          let w = Array.make (as_bytes 512) 0l in
            begin
              for t = 0 to 15 do
                w.(t) <- (or_int32 (left_int32 (to_int32 (Buffer.nth message (boff + (t*4  )))) 24)
                         (or_int32 (left_int32 (to_int32 (Buffer.nth message (boff + (t*4+1)))) 16)
                         (or_int32 (left_int32 (to_int32 (Buffer.nth message (boff + (t*4+2))))  8)
                                               (to_int32 (Buffer.nth message (boff + (t*4+3))))   )));
              done;
              for t = 16 to 63 do
                w.(t) <- add_int32 (add_int32 (rh01 w.(t-2)) w.(t-7)) (add_int32 (rh00 w.(t-15)) w.(t-16))
              done;
              w
            end
        in
          if i = blocks then 
            let sha256 = Buffer.create (as_bytes 256) in
            let rec pack_sha256 i =
              match i with
                | 8 -> Buffer.contents sha256
                | _ ->
                    begin
                      Buffer.add_buffer sha256 (Bin.pack32 sha.(i));
                      pack_sha256 (i+1)
                    end
            in pack_sha256 0
          else
            begin
              let w = array_of_block i in
              let tem = [| 0l; 0l |] in
                begin
                  let a = ref sha.(0) in 
                  let b = ref sha.(1) in
                  let c = ref sha.(2) in
                  let d = ref sha.(3) in 
                  let e = ref sha.(4) in
                  let f = ref sha.(5) in
                  let g = ref sha.(6) in
                  let h = ref sha.(7) in
                    for t = 0 to 63 do
                      begin
                        tem.(0) <- add_int32 (add_int32 !h (sum1 !e)) (add_int32 (ch !e !f !g) (add_int32 k.(t) w.(t)));
                        tem.(1) <- add_int32 (sum0 !a) (maj !a !b !c);
                        h := !g;
                        g := !f;
                        f := !e;
                        e := add_int32 !d tem.(0);
                        d := !c;
                        c := !b;
                        b := !a;
                        a := add_int32 tem.(0) tem.(1);
                       end
                    done;
                    sha.(0) <- add_int32 sha.(0) !a;
                    sha.(1) <- add_int32 sha.(1) !b;
                    sha.(2) <- add_int32 sha.(2) !c;
                    sha.(3) <- add_int32 sha.(3) !d;
                    sha.(4) <- add_int32 sha.(4) !e;
                    sha.(5) <- add_int32 sha.(5) !f;
                    sha.(6) <- add_int32 sha.(6) !g;
                    sha.(7) <- add_int32 sha.(7) !h;

                    (* good faith attempt to clear memory *)
                    for i = 0 to 63 do w.(t) <- 0 done;
                    tem.(0) <- 0; tem.(1) <- 0;
                    a := 0; b := 0; c := 0; d := 0; e := 0; f := 0; g := 0; h := 0;
                end;
            process_block (i+1) blocks
          end
  in process_block 0 ((Buffer.length message) / (as_bytes 512))

  let hexdigits s =
    let rec hexdigits_inner hx i =
      match i with
        | 32 -> hx
        | _ -> hexdigits_inner (hx ^ (Printf.sprintf "%02x" (int_of_char s.[i]))) (i+1)
    in
      hexdigits_inner "" 0

The pack functions, defined in a separate file, are thus:

let pack64 x = 
  let b = Buffer.create 8 in 
    for i = 0 to 7 do
      let shft = (7-i)*8 in
        Buffer.add_char b (char_of_int (Int64.to_int (Int64.logand (Int64.shift_right x shft) 0xFFL)));
    done;
    b

let pack x n = 
  if (n mod 8) = 0 then
    let n' = n/8 in
    let b = Buffer.create n' in 
      for i = 0 to n'-1 do
        let shft = ((n'-1)-i)*8 in
          Buffer.add_char b (char_of_int (Int32.to_int (Int32.logand (Int32.shift_right x shft) 0xFFl)));
      done;
      b
  else
    raise (Invalid_argument ("pack: " ^ (string_of_int n) ^ " is not a multiple of 8"))

let pack32 x = pack x 32
let pack16 x = pack x 16
let pack8 x = pack x 8
+2  A: 

The first thing you should do is get the test vectors from the standard and verify if your implementation generates the exact same result. If it does not, it's broken.

You can also generate other test vectors if you have a "known sane" implementation (the openssl command probably has one).

Finally, run some performance tests with progressively larger files, and compare with a known fast implementation (the openssl one should be quite fast). If it fails (exausting all memory or being too slow), you have to fix something on it.

If it passes all these tests, it should be good enough. There shouldn't be many security concerns with a hashing algorithm (unless you are hashing sensitive data, where you would have to be very careful to overwrite all the memory you used).

CesarB