Personally, I think a password policy that forces use of all three character classes is not very helpful. You can get the same degree of randomness by letting people make longer passwords. Users will tend to get frustrated and write passwords down if they have to abide by too many password rules (which make the passwords too difficult to remember). I recommend counting bits of entropy and making sure they're greater than 60 (usually requires a 10-14 character password). Entropy per character would depend roughly on the number of characters, the range of character sets they use, and maybe how often they switch between character sets (I would guess that passwords like HEYthere are more predictable than heYThEre).
Another note: do you plan not to count the symbols to the right of the keyboard (period, comma, angle brackets, etc.)?
If you still have to find groups of two characters, why not just repeat each pattern? For example, make (?=.\d) into (?=.\d.*\d).
For your test cases, if you are worried that it would only check the first criteria, then write a test case that makes sure each of the following passwords fails (because one and only one of the criteria is not met in each case): Just for fun I reversed the order of expectation of each character set, though it probably won't make a difference unless someone removes/forgets the ?= at some future date.
!@#TESTwithoutnumbers
TESTwithoutsymbols123
&*(testwithoutuppercase456
+_^TESTWITHOUTLOWERCASE3498
I should point out that technically none of these passwords should be acceptable because they use dictionary words, which have about 2 bits of entropy per character instead of something more like 6. However, I realize that it's difficult to write a (maintainable and efficient) regular expression to check for dictionary words.