The amount of effort you use to solve this problem is directly related to the number of stored queries you are dealing with.
Over 20 years ago we handled stored queries by treating them as minidocs and indexing them based on all of the must have and may have terms. A new doc's term list was used as a sort of query against this "database of queries" and that built a list of possibly interesting searches to run, and then only those searches were run against the new docs. This may sound convoluted, but when there are more than a few stored queries (say anywhere from 10,000 to 1,000,000 or more) and you have a complex query language that supports a hybrid of Boolean and similarity-based searching, it substantially reduced the number we had to execute as full-on queries -- often no more that 10 or 15 queries.
One thing that helped was that we were in control of the horizontal and the vertical of the whole thing. We used our query parser to build a parse tree and that was used to build the list of must/may have terms we indexed the query under. We warned the customer away from using certain types of wildcards in the stored queries because it could cause an explosion in the number of queries selected.
Update for comment:
Short answer: I don't know for sure.
Longer answer: We were dealing with a custom built text search engine and part of it's query syntax allowed slicing the doc collection in certain ways very efficiently, with special emphasis on date_added
. We played a lot of games because we were ingesting 4-10,000,000 new docs a day and running them against up to 1,000,000+ stored queries on a DEC Alphas with 64MB of main memory. (This was in the late 80's/early 90's.)
I'm guessing that filtering on something equivalent to date_added
could be done used in combination the date of the last time you ran your queries, or maybe the highest id
at last query run time. If you need to re-run the queries against a modified record you could use its id
as part of the query.
For me to get any more specific, you're going to have to get a lot more specific about exactly what problem you are trying to solve and the scale of the solution you are trying accomplishing.