You can't use the same implementation as the result object of os.stat() and others. However Python 2.6 has a new factory function that creates a similar datatype called named tuple. A named tuple is a tuple whose slots can also be addressed by name. The named tuple should not require any more memory, according to the documentation, than a regular tuple, since they don't have a per instance dictionary. The factory function signature is:
collections.namedtuple(typename, field_names[, verbose])
The first argument specifies the name of the new type, the second argument is a string (space or comma separated) containing the field names and, finally, if verbose is true, the factory function will also print the class generated.
Example
Suppose you have a tuple containing a username and password. To access the username you get the item at position zero and the password is accessed at position one:
credential = ('joeuser', 'secret123')
print 'Username:', credential[0]
print 'Password:', credential[1]
There's nothing wrong with this code but the tuple isn't self-documenting. You have to find and read the documentation about the positioning of the fields in the tuple. This is where named tuple can come to the rescue. We can recode the previous example as follows:
import collections
# Create a new sub-tuple named Credential
Credential = collections.namedtuple('Credential', 'username, password')
credential = Credential(username='joeuser', password='secret123')
print 'Username:', credential.username
print 'Password:', credential.password
If you are interested of what the code looks like for the newly created Credential-type you can add verbose=True to the argument list when creating the type, in this particular case we get the following output:
import collections
Credential = collections.namedtuple('Credential', 'username, password', verbose=True)
class Credential(tuple):
'Credential(username, password)'
__slots__ = ()
_fields = ('username', 'password')
def __new__(_cls, username, password):
return _tuple.__new__(_cls, (username, password))
@classmethod
def _make(cls, iterable, new=tuple.__new__, len=len):
'Make a new Credential object from a sequence or iterable'
result = new(cls, iterable)
if len(result) != 2:
raise TypeError('Expected 2 arguments, got %d' % len(result))
return result
def __repr__(self):
return 'Credential(username=%r, password=%r)' % self
def _asdict(t):
'Return a new dict which maps field names to their values'
return {'username': t[0], 'password': t[1]}
def _replace(_self, **kwds):
'Return a new Credential object replacing specified fields with new values'
result = _self._make(map(kwds.pop, ('username', 'password'), _self))
if kwds:
raise ValueError('Got unexpected field names: %r' % kwds.keys())
return result
def __getnewargs__(self):
return tuple(self)
username = _property(_itemgetter(0))
password = _property(_itemgetter(1))
The named tuple doesn't only provide access to fields by name but also contains helper functions such as the _make() function which helps creating an Credential instance from a sequence or iterable. For example:
cred_tuple = ('joeuser', 'secret123')
credential = Credential._make(cred_tuple)
The python library documentation for namedtuple has more information and code examples, so I suggest that you take a peek.