There are several statistical methods for reducing a large dataset to a smaller, easier to visualize dataset. It's not clear from your question what summary statistic you want. I've just assumed that you want to see how the exchange rate changes as a function of time, but perhaps you are interested in how often the exchange rate goes above a certain value, or some other statistic that I'm not considering.
Summarizing a trend over time
Here is an example using the lowess method in R (from the documentation on scatter plot smoothing):
> library(graphics)
# print out the first 10 rows of the cars dataset
> cars[1:10,]
speed dist
1 4 2
2 4 10
3 7 4
4 7 22
5 8 16
6 9 10
7 10 18
8 10 26
9 10 34
10 11 17
# plot the original data
> plot(cars, main = "lowess(cars)")
# fit a loess-smoothed line to the points
> lines(lowess(cars), col = 2)
# plot a finger-grained loess-smoothed line to the points
> lines(lowess(cars, f=.2), col = 3)
The parameter f controls how tightly the regression fits to your data. Use some thoughtfulness with this, as you want something that accurately fits your data without overfitting. Rather than speed and distance, you could plot the exchange rate versus time.
It's also straightforward to access the results of the smoothing. Here's how to do that:
> data = lowess( cars$speed, cars$dist )
> data
$x
[1] 4 4 7 7 8 9 10 10 10 11 11 12 12 12 12 13 13 13 13 14 14 14 14 15 15 15 16 16 17 17 17 18 18 18 18 19 19
[38] 19 20 20 20 20 20 22 23 24 24 24 24 25
$y
[1] 4.965459 4.965459 13.124495 13.124495 15.858633 18.579691 21.280313 21.280313 21.280313 24.129277 24.129277
[12] 27.119549 27.119549 27.119549 27.119549 30.027276 30.027276 30.027276 30.027276 32.962506 32.962506 32.962506
[23] 32.962506 36.757728 36.757728 36.757728 40.435075 40.435075 43.463492 43.463492 43.463492 46.885479 46.885479
[34] 46.885479 46.885479 50.793152 50.793152 50.793152 56.491224 56.491224 56.491224 56.491224 56.491224 67.585824
[45] 73.079695 78.643164 78.643164 78.643164 78.643164 84.328698
The data object that you get back contains entries named x and y, which correspond to the x and y values passed into the lowess function. In this case, x and y represent speed and dist.