It looks like Partial Evaluation applied to Java.
That idea is if you have a general function F(A,B) having two parameters A and B, and (just suppose) every time it is called, A is always the same. Then you could transform F(A,B) into a new function FA(B) that only takes one parameter, B. This function should be faster because it is not having to process the information in A - it already "knows" it. It can also be smaller, for the same reason.
This is closely related to code generation.
In code generation, you write a code generator G to take input A and write the small, fast specialized function FA. G(A) -> FA
.
In specialization, you need three things, the general program F, the specializer S, and the input A: S(F,A) -> FA
.
I think it's a case of divide-and-conquer.
In code generation, you only have to write G(A), which is simple because it only has to consider all As, while the generated program considers all the Bs.
In Partial Evaluation, you have to get an S somewhere, and you have to write F(A,B) which is more difficult because it has to consider the cross product of all possible As and Bs.
In personal experience, a program F(A,B) had to be written to bridge real-time changes from an older hierarchical database to a newer relational one. A was the meta-description of how to map the old database to the new, in the form of another database. B was the changes being made to the original database, and F(A,B) computed the corresponding changes to the newer database. Since A changed at low frequency (weekly), F(A,B) did not have to be written. Instead a generator G(A) was written (in C) to generate FA(B) (in C). Time saved was roughly an order of magnitude of development time, and two orders of magnitude of run time.