In theory every normal single can have the exponent and mantissa padded to create a double and then remove the padding and you return to the original single.
When you go from theory to reality is when you will have problems. I dont know if you were interested in theory or implementation. If it is implementation then you can rapidly get into trouble.
IEEE is a horrible format, my understanding it was intentionally designed to be so tough that nobody could meet it and allow the market to catch up to intel (this was a while back) allowing for more competition. If that is true it failed, either way we are stuck with this dreadful spec. Something like the TI format is far superior for the real world in so many ways. I have no connection to either company or any of these formats.
Thanks to this spec there are very few if any fpus that actually meet it (in hardware or even in hardware plus the operating system), and those that do often fail on the next generation. (google: TestFloat). The problems these days tend to lie in the int to float and float to int and not single to double and double to single as you have specified above. Of course what operation is the fpu going to perform to do that conversion? Add 0? Multiply by 1? Depends on the fpu and the compiler.
The problem with IEEE related to your question above is that there is more than one way a number, not every number but many numbers can be represented. If I wanted to break your code I would start with minus zero in the hope that one of the two operations would convert it to a plus zero. Then I would try denormals. And it should fail with a signaling nan, but you called that out as a known exception.
The problem is that equal sign, here is rule number one about floating point, never use an equal sign. Equals is a bit comparison not a value comparison, if you have two values represented in different ways (plus zero and minus zero for example) the bit comparison will fail even though its the same number. Greater than and less than are done in the fpu, equals is done with the integer alu.
I realize that you probably used the equal to explain the problem and not necessarily the code you wanted to succeed or fail.