First, the key python library for computational linguistics is NLTK ("Natural Language Toolkit"). This is a stable, mature library created and maintained by professional computational linguists. It also has an extensive collection of tutorials, FAQs, etc. I recommend it highly.
Below is a simple template, in python code, for the problem raised in your Question; although it's a template it runs--supply any text as a string (as i've done) and it will return a list of word frequencies as well as a ranked list of those words in order of 'importance' (or suitability as keywords) according to a very simple heuristic.
Keywords for a given document are (obviously) chosen from among important words in a document--ie, those words that are likely to distinguish it from another document. If you had no a priori knowledge of the text's subject matter, a common technique is to infer the importance or weight of a given word/term from its frequency, or importance = 1/frequency.
text = """ The intensity of the feeling makes up for the disproportion of the objects. Things are equal to the imagination, which have the power of affecting the mind with an equal degree of terror, admiration, delight, or love. When Lear calls upon the heavens to avenge his cause, "for they are old like him," there is nothing extravagant or impious in this sublime identification of his age with theirs; for there is no other image which could do justice to the agonising sense of his wrongs and his despair!
BAD_CHARS = ".!?,\'\""
# transform text into a list words--removing punctuation and filtering small words
words = [ word.strip(BAD_CHARS) for word in text.strip().split() if len(word) > 4 ]
word_freq = {}
# generate a 'word histogram' for the text--ie, a list of the frequencies of each word
for word in words :
word_freq[word] = word_freq.get(word, 0) + 1
# sort the word list by frequency
# (just a DSU sort, there's a python built-in for this, but i can't remember it)
tx = [ (v, k) for (k, v) in word_freq.items()]
tx.sort(reverse=True)
word_freq_sorted = [ (k, v) for (v, k) in tx ]
# eg, what are the most common words in that text?
print(word_freq_sorted)
# returns: [('which', 4), ('other', 4), ('like', 4), ('what', 3), ('upon', 3)]
# obviously using a text larger than 50 or so words will give you more meaningful results
term_importance = lambda word : 1.0/word_freq[word]
# select document keywords from the words at/near the top of this list:
map(term_importance, word_freq.keys())