In general, if you're trying to use Twisted in a "blocking" way, you're going to run into a lot of difficulties, because that's neither the way it's intended to be used, nor the way in which most people use it.
Going with the flow is generally a lot easier, and in this case, that means embracing callbacks. The callback-style solution to your question would look something like this:
import re
from twisted.internet import reactor, protocol
from twisted.words.protocols import irc
find_command = re.compile(r'google ([a-z]+)').findall
class Googler(irc.IRCClient):
def privmsg(self, user, channel, message):
for text in find_command(message):
self.say(channel, "http://google.com/search?q=%s" % (text,))
def connect():
cc = protocol.ClientCreator(reactor, Googler)
return cc.connectTCP(host, port)
def run(proto):
proto.join(channel)
def main():
d = connect()
d.addCallback(run)
reactor.run()
This isn't absolutely required (but I strongly suggest you consider trying it). One alternative is inlineCallbacks
:
import re
from twisted.internet import reactor, protocol, defer
from twisted.words.protocols import irc
find_command = re.compile(r'google ([a-z]+)').findall
class Googler(irc.IRCClient):
def privmsg(self, user, channel, message):
for text in find_command(message):
self.say(channel, "http://google.com/search?q=%s" % (text,))
@defer.inlineCallbacks
def run():
cc = protocol.ClientCreator(reactor, Googler)
proto = yield cc.connectTCP(host, port)
proto.join(channel)
def main():
run()
reactor.run()
Notice no more addCallbacks
. It's been replaced by yield
in a decorated generator function. This could get even closer to what you asked for if you had a version of Googler
with a different API (the one above should work with IRCClient
from Twisted as it is written - though I didn't test it). It would be entirely possible for Googler.join
to return a Channel
object of some sort, and for that Channel
object to be iterable like this:
@defer.inlineCallbacks
def run():
cc = protocol.ClientCreator(reactor, Googler)
proto = yield cc.connectTCP(host, port)
channel = proto.join(channel)
for msg in channel:
msg = yield msg
for text in find_command(msg):
channel.say("http://google.com/search?q=%s" % (text,))
It's only a matter of implementing this API on top of the ones already present. Of course, the yield
expressions are still there, and I don't know how much this will upset you. ;)
It's possible to go still further away from callbacks and make the context switches necessary for asynchronous operation to work completely invisible. This is bad for the same reason it would be bad for sidewalks outside your house to be littered with invisible bear traps. However, it's possible. Using something like corotwine, itself based on a third-party coroutine library for CPython, you can have the implementation of Channel
do the context switching itself, rather than requiring the calling application code to do it. The result might look something like:
from corotwine import protocol
def run():
proto = Googler()
transport = protocol.gConnectTCP(host, port)
proto.makeConnection(transport)
channel = proto.join(channel)
for msg in channel:
for text in find_command(msg):
channel.say("http://google.com/search?q=%s" % (text,))
with an implementation of Channel
that might look something like:
from corotwine import defer
class Channel(object):
def __init__(self, ircClient, name):
self.ircClient = ircClient
self.name = name
def __iter__(self):
while True:
d = self.ircClient.getNextMessage(self.name)
message = defer.blockOn(d)
yield message
This in turn depends on a new Googler
method, getNextMessage
, which is a straightforward feature addition based on existing IRCClient
callbacks:
from twisted.internet import defer
class Googler(irc.IRCClient):
def connectionMade(self):
irc.IRCClient.connectionMade(self)
self._nextMessages = {}
def getNextMessage(self, channel):
if channel not in self._nextMessages:
self._nextMessages[channel] = defer.DeferredQueue()
return self._nextMessages[channel].get()
def privmsg(self, user, channel, message):
if channel not in self._nextMessages:
self._nextMessages[channel] = defer.DeferredQueue()
self._nextMessages[channel].put(message)
To run this, you create a new greenlet for the run
function and switch to it, and then start the reactor.
from greenlet import greenlet
def main():
greenlet(run).switch()
reactor.run()
When run
gets to its first asynchronous operation, it switches back to the reactor greenlet (which is the "main" greenlet in this case, but it doesn't really matter) to let the asynchronous operation complete. When it completes, corotwine turns the callback into a greenlet switch back into run
. So run
is granted the illusion of running straight through, like a "normal" synchronous program. Keep in mind that it is just an illusion, though.
So, it's possible to get as far away from the callback-oriented style that is most commonly used with Twisted as you want. It's not necessarily a good idea, though.