Hello
Anyone know where I can obtain a sample implementation of a Directed Graph and sample code for performing a topological sort on a directed graph? (preferably in Java)
Thanks
views:
262answers:
2
A:
Here goes a implementation I did some time ago:
/**
*
* Sorts a directed graph, obtaining a visiting sequence ("sorted" list)
* that respects the "Predecessors" (as in a job/task requirements list).
* (when there is freedom, the original ordering is preferred)
*
* The behaviour in case of loops (cycles) depends on the "mode":
* permitLoops == false : loops are detected, but result is UNDEFINED (simpler)
* permitLoops == true : loops are detected, result a "best effort" try, original ordering is privileged
*
* http://en.wikipedia.org/wiki/Topological_sort
*/
public class TopologicalSorter<T extends DirectedGraphNode> {
private final boolean permitLoops;
private final Collection<T> graph; // original graph. this is not touched.
private final List<T> sorted = new ArrayList<T>(); // result
private final Set<T> visited = new HashSet<T>(); // auxiliar list
private final Set<T> withLoops = new HashSet<T>();
// auxiliar: all succesors (also remote) of each node; this is only used if permitLoops==true
private HashMap<T, Set<T>> succesors = null;
public TopologicalSorter(Collection<T> graph, boolean permitLoops) {
this.graph = graph;
this.permitLoops = permitLoops;
}
public void sort() {
init();
for( T n : graph ) {
if( permitLoops ) visitLoopsPermitted(n);
else visitLoopsNoPermitted(n, new HashSet<T>());
}
}
private void init() {
sorted.clear();
visited.clear();
withLoops.clear();
// build succesors map: only it permitLoops == true
if( permitLoops ) {
succesors = new HashMap<T, Set<T>>();
HashMap<T, Set<T>> addTo = new HashMap();
for( T n : graph ) {
succesors.put(n, new HashSet<T>());
addTo.put(n, new HashSet<T>());
}
for( T n2 : graph ) {
for( DirectedGraphNode n1 : n2.getPredecessors() ) {
succesors.get(n1).add(n2);
}
}
boolean change = false;
do {
change = false;
for( T n : graph ) {
addTo.get(n).clear();
for( T ns : succesors.get(n) ) {
for( T ns2 : succesors.get(ns) ) {
if( !succesors.get(n).contains(ns2) ) {
change = true;
addTo.get(n).add(ns2);
}
}
}
}
for( DirectedGraphNode n : graph ) {
succesors.get(n).addAll(addTo.get(n));
}
} while(change);
}
}
private void visitLoopsNoPermitted(T n, Set<T> visitedInThisCallStack) { // this is simpler than visitLoopsPermitted
if( visited.contains(n) ) {
if( visitedInThisCallStack.contains(n) ) {
withLoops.add(n); // loop!
}
return;
}
//System.out.println("visiting " + n.toString());
visited.add(n);
visitedInThisCallStack.add(n);
for( DirectedGraphNode n1 : n.getPredecessors() ) {
visitLoopsNoPermitted((T) n1, visitedInThisCallStack);
}
sorted.add(n);
}
private void visitLoopsPermitted(T n) {
if( visited.contains(n) ) return;
//System.out.println("visiting " + n.toString());
visited.add(n);
for( DirectedGraphNode n1 : n.getPredecessors() ) {
if( succesors.get(n).contains(n1) ) {
withLoops.add(n);
withLoops.add((T) n1);
continue;
} // loop!
visitLoopsPermitted((T) n1);
}
sorted.add(n);
}
public boolean hadLoops() {
return withLoops.size() > 0;
}
public List<T> getSorted() {
return sorted;
}
public Set<T> getWithLoops() {
return withLoops;
}
public void showResult() { // for debugging
for( DirectedGraphNode node : sorted ) {
System.out.println(node.toString());
}
if( hadLoops() ) {
System.out.println("LOOPS!:");
for( DirectedGraphNode node : withLoops ) {
System.out.println(" " + node.toString());
}
}
}
}
/**
* Node that conform a DirectedGraph
* It is used by TopologicalSorter
*/
public interface DirectedGraphNode {
/**
* empty collection if no predecessors
* @return
*/
public Collection<DirectedGraphNode> getPredecessors();
}
And here one example of use:
public class TopologicalSorterExample {
public static class Node implements DirectedGraphNode {
public final String x;
public ArrayList<DirectedGraphNode> antec = new ArrayList<DirectedGraphNode>(); // immediate antecesors
public Node(String x) {this.x= x;}
public Collection<DirectedGraphNode> getPredecessors() {
return antec;
}
public String toString() {
return x;
}
}
public static void main(String[] args) {
List<DirectedGraphNode> graph = new ArrayList<DirectedGraphNode>();
Node na = new Node("A");
Node nb = new Node("B");
Node nc = new Node("C");
Node nd = new Node("D");
Node ne = new Node("E");
nc.antec.add(na);
nc.antec.add(nb);
nd.antec.add(ne);
ne.antec.add(na);
na.antec.add(nd);
graph.add(nc);
graph.add(na);
graph.add(nb);
graph.add(ne);
graph.add(nd);
TopologicalSorter ts = new TopologicalSorter(graph, false);
ts.sort();
ts.showResult();
}
}
Two additional features (or complications) in my code:
I needed to support loops (cycles) in my case, so that if the graph has loops it makes some "best effort" ordering. This behaviour is controlled by a flag passed to the constructor. In any case, you can (should) call hadLoops()
to ask if there were cycles detected.
Besides, I wanted the sorting algorithm to prefer the original ordering in case of freedom.
leonbloy
2010-04-29 18:02:53
A:
Here is a simple implementation of the first algorithm from the Wikipedia page on Topological Sort:
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashSet;
import java.util.Iterator;
public class Graph {
static class Node{
public final String name;
public final HashSet<Edge> inEdges;
public final HashSet<Edge> outEdges;
public Node(String name) {
this.name = name;
inEdges = new HashSet<Edge>();
outEdges = new HashSet<Edge>();
}
public Node addEdge(Node node){
Edge e = new Edge(this, node);
outEdges.add(e);
node.inEdges.add(e);
return this;
}
@Override
public String toString() {
return name;
}
}
static class Edge{
public final Node from;
public final Node to;
public Edge(Node from, Node to) {
this.from = from;
this.to = to;
}
@Override
public boolean equals(Object obj) {
Edge e = (Edge)obj;
return e.from == from && e.to == to;
}
}
public static void main(String[] args) {
Node seven = new Node("7");
Node five = new Node("5");
Node three = new Node("3");
Node eleven = new Node("11");
Node eight = new Node("8");
Node two = new Node("2");
Node nine = new Node("9");
Node ten = new Node("10");
seven.addEdge(eleven).addEdge(eight);
five.addEdge(eleven);
three.addEdge(eight).addEdge(ten);
eleven.addEdge(two).addEdge(nine).addEdge(ten);
eight.addEdge(nine).addEdge(ten);
Node[] allNodes = {seven, five, three, eleven, eight, two, nine, ten};
//L <- Empty list that will contain the sorted elements
ArrayList<Node> L = new ArrayList<Node>();
//S <- Set of all nodes with no incoming edges
HashSet<Node> S = new HashSet<Node>();
for(Node n : allNodes){
if(n.inEdges.size() == 0){
S.add(n);
}
}
//while S is non-empty do
while(!S.isEmpty()){
//remove a node n from S
Node n = S.iterator().next();
S.remove(n);
//insert n into L
L.add(n);
//for each node m with an edge e from n to m do
for(Iterator<Edge> it = n.outEdges.iterator();it.hasNext();){
//remove edge e from the graph
Edge e = it.next();
Node m = e.to;
it.remove();//Remove edge from n
m.inEdges.remove(e);//Remove edge from m
//if m has no other incoming edges then insert m into S
if(m.inEdges.isEmpty()){
S.add(m);
}
}
}
//Check to see if all edges are removed
boolean cycle = false;
for(Node n : allNodes){
if(!n.inEdges.isEmpty()){
cycle = true;
break;
}
}
if(cycle){
System.out.println("Cycle present, topological sort not possible");
}else{
System.out.println("Topological Sort: "+Arrays.toString(L.toArray()));
}
}
}
M. Jessup
2010-04-29 18:26:18