views:

210

answers:

1

This question is related to my question on existing coroutine implementations in Java. If, as I suspect, it turns out that there is no full implementation of coroutines currently available in Java, what would be required to implement them?

As I said in that question, I know about the following:

  1. You can implement "coroutines" as threads/thread pools behind the scenes.
  2. You can do tricksy things with JVM bytecode behind the scenes to make coroutines possible.
  3. The so-called "Da Vinci Machine" JVM implementation has primitives that make coroutines doable without bytecode manipulation.
  4. There are various JNI-based approaches to coroutines also possible.

I'll address each one's deficiencies in turn.

Thread-based coroutines

This "solution" is pathological. The whole point of coroutines is to avoid the overhead of threading, locking, kernel scheduling, etc. Coroutines are supposed to be light and fast and to execute only in user space. Implementing them in terms of full-tilt threads with tight restrictions gets rid of all the advantages.

JVM bytecode manipulation

This solution is more practical, albeit a bit difficult to pull off. This is roughly the same as jumping down into assembly language for coroutine libraries in C (which is how many of them work) with the advantage that you have only one architecture to worry about and get right.

It also ties you down to only running your code on fully-compliant JVM stacks (which means, for example, no Android) unless you can find a way to do the same thing on the non-compliant stack. If you do find a way to do this, however, you have now doubled your system complexity and testing needs.

The Da Vinci Machine

The Da Vinci Machine is cool for experimentation, but since it is not a standard JVM its features aren't going to be available everywhere. Indeed I suspect most production environments would specifically forbid the use of the Da Vinci Machine. Thus I could use this to make cool experiments but not for any code I expect to release to the real world.

This also has the added problem similar to the JVM bytecode manipulation solution above: won't work on alternative stacks (like Android's).

JNI implementation

This solution renders the point of doing this in Java at all moot. Each combination of CPU and operating system requires independent testing and each is a point of potentially frustrating subtle failure. Alternatively, of course, I could tie myself down to one platform entirely but this, too, makes the point of doing things in Java entirely moot.

So...

Is there any way to implement coroutines in Java without using one of these four techniques? Or will I be forced to use the one of those four that smells the least (JVM manipulation) instead?


Edited to add:

Just to ensure that confusion is contained, this is a related question to my other one, but not the same. That one is looking for an existing implementation in a bid to avoid reinventing the wheel unnecessarily. This one is a question relating to how one would go about implementing coroutines in Java should the other prove unanswerable. The intent is to keep different questions on different threads.

+2  A: 

I would take a look at this: http://www.chiark.greenend.org.uk/~sgtatham/coroutines.html, its pretty interesting and should provide a good place to start. But of course we are using Java so we can do better (or maybe worse because there are no macros :))

From my understanding with coroutines you usually have a producer and a consumer coroutine (or at least this is the most common pattern). But semantically you don't want the producer to call the consumer or visa-versa because this introduces an asymmetry. But given the way stack based languages work we will need to have someone do the calling.

So here is a very simple type hierarchy:

public interface CoroutineProducer<T>
{
    public T Produce();
    public boolean isDone();
}

public interface CoroutineConsumer<T>
{
    public void Consume(T t);
}

public class CoroutineManager
{
    public static Execute<T>(CoroutineProducer<T> prod, CoroutineConsumer<T> con)
    {
        while(!prod.IsDone()) // really simple
        {
            T d = prod.Produce();
            con.Consume(d);
        }
    }
}

Now of course the hard part is implementing the interfaces, in particular it is difficult to break a computation into individual steps. For this you would probably want a whole other set of persistent control structures. The basic idea is that we want to simulate non-local transfer of control (in the end its kinda like we're simulating a goto). We basically want to move away from using the stack and the pc (program-counter) by keeping the state of our current operations in the heap instead of on the stack. Therefore we are going to need a bunch of helper classes.

For example:

Let's say that in an ideal world you wanted to write a consumer that looked like this (psuedocode):

boolean is_done;
int other_state;
while(!is_done)
{
    //read input
    //parse input
    //yield input to coroutine
    //update is_done and other_state;
}

we need to abstract the local variable like is_doneand other_state and we need to abstract the while loop itself because our yield like operation is not going to be using the stack. So let's create a while loop abstraction and associated classes:

enum WhileState {BREAK, CONTINUE, YIELD}
abstract class WhileLoop<T>
{
    private boolean is_done;
    public boolean isDone() { return is_done;}
    private T rval;
    public T getReturnValue() {return rval;} 
    protected void setReturnValue(T val)
    {
        rval = val;
    }


    public T loop()
    {
        while(true)
        {
            WhileState state = execute();
            if(state == WhileState.YIELD)
                return getReturnValue();
            else if(state == WhileState.BREAK)
                    {
                       is_done = true;
                return null;
                    }
        }
    }
    protected abstract WhileState execute();
}

The Basic trick here is to move local variables to be class variables and turn scope blocks into classes which gives us the ability to 're-enter' our 'loop' after yielding our return value.

Now to implement our producer

public class SampleProducer : CoroutineProducer<Object>
{
    private WhileLoop<Object> loop;//our control structures become state!!
    public SampleProducer()
    {
        loop = new WhileLoop()
        {
            private int other_state;//our local variables become state of the control structure
            protected WhileState execute() 
            {
                //this implements a single iteration of the loop
                if(is_done) return WhileState.BREAK;
                //read input
                //parse input
                Object calcluated_value = ...;
                //update is_done, figure out if we want to continue
                setReturnValue(calculated_value);
                return WhileState.YIELD;
            }
        };
    }
    public Object Produce()
    {
        Object val = loop.loop();
        return val;
    }
    public boolean isDone()
    {
        //we are done when the loop has exited
        return loop.isDone();
    }
}

Similar tricks could be done for other basic control flow structures. You would ideally build up a library of these helper classes and then use them to implement these simple interfaces which would ultimately give you the semantics of co-routines. I'm sure everything I've written here can be generalized and expanded upon greatly.

luke
I'm actually very familiar with that particular article. ;) I used it's technique for a long time until I switched over to libpcl for my coroutine needs in C. I have to head off to work right now, so I'll look over your translation of that code into Java when I get back. Thanks for the answer.
JUST MY correct OPINION
i wouldn't say that this is a translation of that code, its basically impossible to do that because we don't have goto or duffs device or macros, however that link is very useful for understanding exactly what the implementation issues are.
luke
There's an old saying in polyglot circles: "It's impossible to translate poetry, but it's always worth the effort." I take the same stance here on code. You can't translate code idioms, but it's worth the effort.By showing me how that code would look in Java you've basically answered my question: I have to use one of the four smelly techniques because it's not really possible in Java alone. For that you get the selected answer. (Well, that and it's the ONLY answer. :D)
JUST MY correct OPINION