amro gives a nice answer (that I rated up), but it will be highly intensive if you wish to generate many numbers from a large set. This is because the bsxfun operation can generate a huge array, which is then summed. For example, suppose I had a set of 10000 values to sample from, all with different weights? Now, generate 1000000 numbers from that sample.
This will take some work to do, since it will generate a 10000x1000000 array internally, with 10^10 elements in it. It will be a logical array, but even so, 10 gigabytes of ram must be allocated.
A better solution is to use histc. Thus...
a = 1:3
w = [.3 .1 .2];
N = 10;
[~,R] = histc(rand(1,N),cumsum([0;w(:)./sum(w)]));
R = a(R)
R =
1 1 1 2 2 1 3 1 1 1
However, for a large problem of the size I suggested above, it is fast.
a = 1:10000;
w = rand(1,10000);
N = 1000000;
tic
[~,R] = histc(rand(1,N),cumsum([0;w(:)./sum(w)]));
R = a(R);
toc
Elapsed time is 0.120879 seconds.
Admittedly, my version takes 2 lines to write. The indexing operation must happen on a second line since it uses the second output of histc. Also note that I've used the ability of the new matlab release, with the tilde (~) operator as the first argument of histc. This causes that first argument to be immediately dumped in the bit bucket.