The syntax is fine (in Python 2). The semantics has some avoidable complications, and this off-by-one bug:
for x in range(2,int(sqrt(num))):
if( num % x == 0 ):
flag = False
range(2, Y)
goes from 2 included to Y
excluded -- so you're often not checking the last possible divisor and thereby deeming "primes" many numbers that aren't. As the simplest fix, try a 1 + int(...
in that range
. After which, removing those avoidable complications is advisable: for example,
if somebool: return True
else: return False
is never warranted, as the simpler return somebool
does the same job.
A simplified version of your entire code (with just indispensable optimizations, but otherwise exactly the same algorithm) might be, for example:
from math import sqrt
def isPrime(num):
for x in range(3, int(1 + sqrt(num)), 2):
if num % x == 0: return False
return True
def main():
i, n = 0, 3
end = 6
while i < end:
if isPrime(n):
i += 1
print n
n += 2
if __name__ == '__main__':
main()
"Return as soon as you know the answer" was already explained, I've added one more crucial optimization (+= 2, instead of 1, for n
, as we "know" even numbers > 3 are not primes, and a tweak of the range
for the same reason).
It's possible to get cuter, e.g.:
def isPrime(num):
return all(num % x for x n range(3, int(1 + sqrt(num)), 2))
though this may not look "simpler" if you're unfamiliar with the all
built-in, it really is, because it saves you having to do (and readers of the code having to follow) low level logic, in favor of an appropriate level of abstraction to express the function's key idea, that is, "num is prime iff all possible odd divisors have a [[non-0]] remainder when the division is tried" (i.e., express the concept directly in precise, executable form). The algorithm within is actually still identical.
Going further...:
import itertools as it
def odd():
for n in it.count(1):
yield n + n + 1
def main():
end = 5
for i, n in enumerate(it.ifilter(isPrime, odd())):
print n
if i >= end: break
Again, this is just the same algorithm as before, just expressed at a more appropriate level of abstraction: the generation of the sequence of odd numbers (from 3 included upwards) placed into its own odd
generator, and some use of the enumerate
built-in and itertools
functionality to avoid inappropriate (and unneeded) low-level expression / reasoning.
I repeat: no fundamental optimization applied yet -- just suitable abstraction. Optimization of unbounded successive primes generation in Python (e.g. via an open-ended Eratosthenes Sieve approach) has been discussed in depth elsewhere, e.g. here (be sure to check the comments too!). Here I was focusing on showing how (with built-ins such as enumerate
, all
, and any
, the crucial itertools
, plus generators and generator expressions) many "looping" problems can be expressed in modern Python at more appropriate levels of abstraction than the "C-inspired" ones that may appear most natural to most programmers reared on C programming and the like. (Perhaps surprisingly to scholars used to C++'s "abstraction penalty" first identified by Stepanov, Python usually tends to have an "abstraction premium" instead, especially if itertools
, well known for its blazing speed, is used extensively and appropriately... but, that's really a different subject;-).