There seems not to have been a good Python implementation. Fortunately the SO "Related articles" sidebar is our friend. This SO article points to an excellent article that gives the maths and a Java implementation. The actual function that you require is rather short and is embedded in my Python code below. Tested to extent shown. Read warnings in comments.
from math import sin, cos, asin, sqrt, degrees, radians
Earth_radius_km = 6371.0
RADIUS = Earth_radius_km
def haversine(angle_radians):
return sin(angle_radians / 2.0) ** 2
def inverse_haversine(h):
return 2 * asin(sqrt(h)) # radians
def distance_between_points(lat1, lon1, lat2, lon2):
# all args are in degrees
# WARNING: loss of absolute precision when points are near-antipodal
lat1 = radians(lat1)
lat2 = radians(lat2)
dlat = lat2 - lat1
dlon = radians(lon2 - lon1)
h = haversine(dlat) + cos(lat1) * cos(lat2) * haversine(dlon)
return RADIUS * inverse_haversine(h)
def bounding_box(lat, lon, distance):
# Input and output lats/longs are in degrees.
# Distance arg must be in same units as RADIUS.
# Returns (dlat, dlon) such that
# no points outside lat +/- dlat or outside lon +/- dlon
# are <= "distance" from the (lat, lon) point.
# Derived from: http://janmatuschek.de/LatitudeLongitudeBoundingCoordinates
# WARNING: problems if North/South Pole is in circle of interest
# WARNING: problems if longitude meridian +/-180 degrees intersects circle of interest
# See quoted article for how to detect and overcome the above problems.
# Note: the result is independent of the longitude of the central point, so the
# "lon" arg is not used.
dlat = distance / RADIUS
dlon = asin(sin(dlat) / cos(radians(lat)))
return degrees(dlat), degrees(dlon)
if __name__ == "__main__":
# Examples from Jan Matuschek's article
def test(lat, lon, dist):
print "test bounding box", lat, lon, dist
dlat, dlon = bounding_box(lat, lon, dist)
print "dlat, dlon degrees", dlat, dlon
print "lat min/max rads", map(radians, (lat - dlat, lat + dlat))
print "lon min/max rads", map(radians, (lon - dlon, lon + dlon))
print "liberty to eiffel"
print distance_between_points(40.6892, -74.0444, 48.8583, 2.2945) # about 5837 km
print
print "calc min/max lat/lon"
degs = map(degrees, (1.3963, -0.6981))
test(*degs, dist=1000)
print
degs = map(degrees, (1.3963, -0.6981, 1.4618, -1.6021))
print degs, "distance", distance_between_points(*degs) # 872 km