This list is a simple function that maps a 2D point to a number, if you regard each {{x,y},z} as f[x,y]=z
{ {{1,3},9}, {{1,4},16}, {{2,4},8}, {{2,5},10} }
I now want a function that interpolates/extrapolates f[x,y] for any {x,y}.
Mathematica refuses to do this:
Interpolation[{{{1,3},9}, {{1,4},16},{{2,4},8}, {{2,5},10}},
InterpolationOrder->1]
Interpolation::indim:
The coordinates do not lie on a structured tensor product grid.
I understand why (Mathematica wants a "rectangular" domain), but what's the easiest way to force Mathematica to create an interpolation?
This doesn't work:
f[1,3]=9; f[1,4]=16; f[2,4]=8; f[2,5]=10; g=FunctionInterpolation[f[x,y],{x,1,2},{y,3,5}]
FunctionInterpolation::nreal:
16
Near {x, y} = {1, --}, the function did not evaluate to a real number.
5
FunctionInterpolation::nreal:
17
Near {x, y} = {1, --}, the function did not evaluate to a real number.
5
FunctionInterpolation::nreal:
18
Near {x, y} = {1, --}, the function did not evaluate to a real number.
5
General::stop: Further output of FunctionInterpolation::nreal will be suppressed during this calculation.
Even if you ignore the warnings above, evaluating g gives errors
g[1.5,4] // FortranForm
f(1.5,4) + 0.*(-9.999999999999991*(f(1.4,4) - f(1.5,4)) +
- 0.10000000000000009*
- (9.999999999999991*
- (9.999999999999991*(f(1.4,4) - f(1.5,4)) +
- 4.999999999999996*(-f(1.4,4) + f(1.6,4))) +
- 0.5000000000000006*
- (-10.000000000000014*
- (-3.333333333333333*(f(1.3,4) - f(1.6,4)) -
- 4.999999999999996*(-f(1.4,4) + f(1.6,4))) -
- 9.999999999999991*
- (9.999999999999991*(f(1.4,4) - f(1.5,4)) +
- 4.999999999999996*(-f(1.4,4) + f(1.6,4))))))
The other "obvious" idea (interpolating interpolating functions themselves) doesn't work either.