Copying another answer of mine in another question:
Here's an old not too-fancy module I did for a friend once (Python 2.x code):
the code
from __future__ import division
import math, os, array, random
import itertools as it
import Image as I
import sys
def encode(txtfn, imgfn):
with open(txtfn, "rb") as ifp:
txtdata= ifp.read()
txtdata= txtdata.encode('zip')
img= I.open(imgfn).convert("RGB")
pixelcount= img.size[0]*img.size[1]
## sys.stderr.write("image %dx%d\n" % img.size)
factor= len(txtdata) / pixelcount
width= int(math.ceil(img.size[0]*factor**.5))
height= int(math.ceil(img.size[1]*factor**.5))
pixelcount= width * height
if pixelcount < len(txtdata): # just a sanity check
sys.stderr.write("phase 2, %d bytes in %d pixels?\n" % (len(txtdata), pixelcount))
sys.exit(1)
## sys.stderr.write("%d bytes in %d pixels (%dx%d)\n" % (len(txtdata), pixelcount, width, height))
img= img.resize( (width, height), I.ANTIALIAS)
txtarr= array.array('B')
txtarr.fromstring(txtdata)
txtarr.extend(random.randrange(256) for x in xrange(len(txtdata) - pixelcount))
newimg= img.copy()
newimg.putdata([
(
r & 0xf8 |(c & 0xe0)>>5,
g & 0xfc |(c & 0x18)>>3,
b & 0xf8 |(c & 0x07),
)
for (r, g, b), c in it.izip(img.getdata(), txtarr)])
newimg.save(os.path.splitext(imgfn)[0]+'.png', optimize=1, compression=9)
def decode(imgfn, txtfn):
img= I.open(imgfn)
with open(txtfn, 'wb') as ofp:
arrdata= array.array('B',
((r & 0x7) << 5 | (g & 0x3) << 3 | (b & 0x7)
for r, g, b in img.getdata())).tostring()
findata= arrdata.decode('zip')
ofp.write(findata)
if __name__ == "__main__":
if sys.argv[1] == 'e':
encode(sys.argv[2], sys.argv[3])
elif sys.argv[1] == 'd':
decode(sys.argv[2], sys.argv[3])
the algorithm
It stores a byte of data per image pixel using: the 3 least-significant bits of the blue band, the 2 LSB of the green one and the 3 LSB of the red one.
encode function: An input text file is compressed by zlib, and the input image is resized (keeping proportions) to ensure that there are at least as many pixels as compressed bytes. A PNG image with the same name as the input image (so don't use a ".png" filename as input if you leave the code as-is :) is saved containing the steganographic data.
decode function: The previously stored zlib-compressed data are extracted from the input image, and saved uncompressed under the provided filename.
I verified the old code still runs, so here's an example image containing steganographic data:
You'll notice that the noise added is barely visible.