- How do i make CaseInsensitiveString behave like String so the above statement is ok (with and w/out extending String)? What is it about String that makes it ok to just be able to pass it a literal like that? From my understanding there is no "copy constructor" concept in Java right?
Enough has been said from the first point. "Polish" is an string literal and cannot be assigned to the CaseInsentiviveString class.
Now about the second point
Although you can't create new literals, you can follow the first item of that book for a "similar" approach so the following statements are true:
// Lets test the insensitiveness
CaseInsensitiveString cis5 = CaseInsensitiveString.valueOf("sOmEtHiNg");
CaseInsensitiveString cis6 = CaseInsensitiveString.valueOf("SoMeThInG");
assert cis5 == cis6;
assert cis5.equals(cis6);
Here's the code.
C:\oreyes\samples\java\insensitive>type CaseInsensitiveString.java
import java.util.Map;
import java.util.HashMap;
public final class CaseInsensitiveString {
private static final Map<String,CaseInsensitiveString> innerPool
= new HashMap<String,CaseInsensitiveString>();
private final String s;
// Effective Java Item 1: Consider providing static factory methods instead of constructors
public static CaseInsensitiveString valueOf( String s ) {
if ( s == null ) {
return null;
}
String value = s.toLowerCase();
if ( !CaseInsensitiveString.innerPool.containsKey( value ) ) {
CaseInsensitiveString.innerPool.put( value , new CaseInsensitiveString( value ) );
}
return CaseInsensitiveString.innerPool.get( value );
}
// Class constructor: This creates a new instance each time it is invoked.
public CaseInsensitiveString(String s){
if (s == null) {
throw new NullPointerException();
}
this.s = s.toLowerCase();
}
public boolean equals( Object other ) {
if ( other instanceof CaseInsensitiveString ) {
CaseInsensitiveString otherInstance = ( CaseInsensitiveString ) other;
return this.s.equals( otherInstance.s );
}
return false;
}
public int hashCode(){
return this.s.hashCode();
}
// Test the class using the "assert" keyword
public static void main( String [] args ) {
// Creating two different objects as in new String("Polish") == new String("Polish") is false
CaseInsensitiveString cis1 = new CaseInsensitiveString("Polish");
CaseInsensitiveString cis2 = new CaseInsensitiveString("Polish");
// references cis1 and cis2 points to differents objects.
// so the following is true
assert cis1 != cis2; // Yes they're different
assert cis1.equals(cis2); // Yes they're equals thanks to the equals method
// Now let's try the valueOf idiom
CaseInsensitiveString cis3 = CaseInsensitiveString.valueOf("Polish");
CaseInsensitiveString cis4 = CaseInsensitiveString.valueOf("Polish");
// References cis3 and cis4 points to same object.
// so the following is true
assert cis3 == cis4; // Yes they point to the same object
assert cis3.equals(cis4); // and still equals.
// Lets test the insensitiveness
CaseInsensitiveString cis5 = CaseInsensitiveString.valueOf("sOmEtHiNg");
CaseInsensitiveString cis6 = CaseInsensitiveString.valueOf("SoMeThInG");
assert cis5 == cis6;
assert cis5.equals(cis6);
// Futhermore
CaseInsensitiveString cis7 = CaseInsensitiveString.valueOf("SomethinG");
CaseInsensitiveString cis8 = CaseInsensitiveString.valueOf("someThing");
assert cis8 == cis5 && cis7 == cis6;
assert cis7.equals(cis5) && cis6.equals(cis8);
}
}
C:\oreyes\samples\java\insensitive>javac CaseInsensitiveString.java
C:\oreyes\samples\java\insensitive>java -ea CaseInsensitiveString
C:\oreyes\samples\java\insensitive>
That is, create an internal pool of CaseInsensitiveString objects, and return the corrensponding instance from there.
This way the "==" operator returns true for two objects references representing the same value.
This is useful when similar objects are used very frequently and creating cost is expensive.
The string class documentation states that the class uses an internal pool
The class is not complete, some interesting issues arises when we try to walk the contents of the object at implementing the CharSequence interface, but this code is good enough to show how that item in the Book could be applied.
It is important to notice that by using the internalPool object, the references are not released and thus not garbage collectible, and that may become an issue if a lot of objects are created.
It works for the String class because it is used intensively and the pool is constituted of "interned" object only.
It works well for the Boolean class too, because there are only two possible values.
And finally that's also the reason why valueOf(int) in class Integer is limited to -128 to 127 int values.