If I have an array like
a = np.array([2, 3, -1, -4, 3])
I want to set all the negative elements to zero: [2, 3, 0, 0, 3]
. How to do it with numpy without an explicit for? I need to use the modified a
in a computation, for example
c = a * b
where b
is another array with the same length of the original a
Conclusion
import numpy as np
from time import time
a = np.random.uniform(-1, 1, 20000000)
t = time(); b = np.where(a>0, a, 0); print "1. ", time() - t
a = np.random.uniform(-1, 1, 20000000)
t = time(); b = a.clip(min=0); print "2. ", time() - t
a = np.random.uniform(-1, 1, 20000000)
t = time(); a[a < 0] = 0; print "3. ", time() - t
a = np.random.uniform(-1, 1, 20000000)
t = time(); a[np.where(a<0)] = 0; print "4. ", time() - t
a = np.random.uniform(-1, 1, 20000000)
t = time(); b = [max(x, 0) for x in a]; print "5. ", time() - t
- 1.38629984856
- 0.516846179962 <- faster a.clip(min=0);
- 0.615426063538
- 0.944557905197
- 51.7364809513