The problem can be restated as, "do the languages described by two or more regular
expressions have a non-empty intersection"?
If you confine the question to pure regular expressions (no backreferences, lookahead,
lookbehind, or other features that allow recognition of context-free or more complex
languages), the question is at least decidable. Regular languages are closed under
intersection, and there is an algorithm that takes the two regular expressions
as inputs and produces, in finite time, a DFA that recognizes the intersection.
Each regular expression can be converted to a nondeterministic finite automaton,
and then to a deterministic finite automaton. A pair of DFAs can be converted
to a DFA that recognizes the intersection. If there is a path from the
start state to any accepting state of that final DFA, the intersection is non-empty
(a "conflict", using your terminology).
Unfortunately, there is a possibly-exponential blowup when converting the initial NFA
to a DFA, so the problem quickly becomes infeasible in practice as the size of
the input expressions grows.
And if extensions to pure regular expressions are permitted, all bets are off --
such languages are no longer closed under intersection, so this construction won't
work.