Yes, see this. Once you have lambda, it's all downhill from there.
Edit This is incorrect. See the note by Ranierpost. (I cannot delete this. Sorry)
Here is a plagiarized Fibonacci example
This should be enough to build a foundation for more generality (I've got to get back to work, or I'd play more.)
dec = $(patsubst .%,%,$1)
not = $(if $1,,.)
lteq = $(if $1,$(if $(findstring $1,$2),.,),.)
gteq = $(if $2,$(if $(findstring $2,$1),.,),.)
eq = $(and $(call lteq,$1,$2),$(call gteq,$1,$2))
lt = $(and $(call lteq,$1,$2),$(call not,$(call gteq,$1,$2)))
add = $1$2
sub = $(if $(call not,$2),$1,$(call sub,$(call dec,$1),$(call dec,$2)))
mul = $(if $(call not,$2),$2,$(call add,$1,$(call mul,$1,$(call dec,$2))))
fibo = $(if $(call lt,$1,..),$1,$(call add,$(call fibo,$(call dec,$1)),$(call fibo,$(call sub,$1,..))))
fact = $(if $(call lt,$1,..),.,$(call mul,$1,$(call fact,$(call dec,$1))))
numeral = $(words $(subst .,. ,$1))
go = $(or $(info $(call numeral,$(call mul,$1,$1)) $(call numeral,$(call fibo,$1)) $(call numeral,$(call fact,$1)) ),$(call go,.$1))
_ := $(call go,)
This prints out squares, fibonacci numbers and factorials. There appears to be a 16 bit limit on number sizes. Bummer.