I am new to python and graphics but have programmed before. According to http://en.wikipedia.org/wiki/Transformation_matrix#Rotation ,
For rotation by an angle θ anticlockwise about the origin, the functional form is x' = xcosθ − ysinθ and y' = xsinθ + ycosθ
But the following python code rotates it in the clockwise direction. Could somebody explain this?. Also translating the rectangle to the origin and back to the center seems to be an overhead. Is there any way to avoid this?. Thanks in advance.
PS: I have looked at pygame.transform.rotate
which does this but I would like to start from scratch to get better idea about the graphics. Is there a way to see the source of this method from python interpreter?
import pygame, sys, time
from math import *
from pygame.locals import *
co_ordinates =((200,200),(400,200),(400,300),(200,300))
window_surface = pygame.display.set_mode((500,500),0,32)
BLACK=(0,0,0)
GREEN=(0,255,0)
RED=(255,0,0)
window_surface.fill(BLACK)
ang=radians(30)
"""orig=pygame.draw.polygon(window_surface,GREEN,co_ordinates)
n_co_ordinates = tuple([(((x[0])*cos(ang)-(x[1])*sin(ang)),((x[0])*sin(ang)+(x[1])*cos(ang))) for x in n_co_ordinates])
n_co_ordinates = tuple([((x[0]+300),(x[1]+250)) for x in n_co_ordinates])
print(n_co_ordinates)
pygame.draw.polygon(window_surface,RED,n_co_ordinates)"""
pygame.display.update()
while True:
for event in pygame.event.get():
if event.type == QUIT:
pygame.quit()
sys.exit()
for i in range(360):
ang=radians(i)
if i>=360:
i=0
n_co_ordinates = tuple([((x[0]-300),(x[1]-250)) for x in co_ordinates])
n_co_ordinates = tuple([((x[0]*cos(ang)-x[1]*sin(ang)),(x[0]*sin(ang)+x[1]*cos(ang))) for x in n_co_ordinates])
n_co_ordinates = tuple([((x[0]+300),(x[1]+250)) for x in n_co_ordinates])
window_surface.fill(BLACK)
pygame.draw.polygon(window_surface,RED,n_co_ordinates)
pygame.display.update()
time.sleep(0.02)