Firstly, this seems like (from ContourPlot) a fairly straightforward maximization problem, why is FindMaximum with Newton's method having problems?
Secondly, how can I get rid of the warnings?
Thirdly, if I can't get rid of these warnings, how can I tell if the warning is meaningful, ie, maximization failed?
For instance, in the code below, FindMaximum with Newton's method gives a warning, whereas the PrincipalAxis method doesn't
o = 1/5 Log[E^(-(h/Sqrt[3]))/( 2 E^(-(h/Sqrt[3])) + 2 E^(h/Sqrt[3]) + E^(-(h/Sqrt[3]) - Sqrt[2] j) + E^(h/Sqrt[3] - Sqrt[2] j) + E^(-Sqrt[3] h + Sqrt[2] j) + E^(Sqrt[3] h + Sqrt[2] j))] + 3/10 Log[E^(h/Sqrt[3])/( 2 E^(-(h/Sqrt[3])) + 2 E^(h/Sqrt[3]) + E^(-(h/Sqrt[3]) - Sqrt[2] j) + E^(h/Sqrt[3] - Sqrt[2] j) + E^(-Sqrt[3] h + Sqrt[2] j) + E^(Sqrt[3] h + Sqrt[2] j))] + 1/5 Log[E^(-(h/Sqrt[3]) - Sqrt[2] j)/( 2 E^(-(h/Sqrt[3])) + 2 E^(h/Sqrt[3]) + E^(-(h/Sqrt[3]) - Sqrt[2] j) + E^(h/Sqrt[3] - Sqrt[2] j) + E^(-Sqrt[3] h + Sqrt[2] j) + E^(Sqrt[3] h + Sqrt[2] j))] + 1/10 Log[E^(h/Sqrt[3] - Sqrt[2] j)/( 2 E^(-(h/Sqrt[3])) + 2 E^(h/Sqrt[3]) + E^(-(h/Sqrt[3]) - Sqrt[2] j) + E^(h/Sqrt[3] - Sqrt[2] j) + E^(-Sqrt[3] h + Sqrt[2] j) + E^(Sqrt[3] h + Sqrt[2] j))] + 1/10 Log[E^(-Sqrt[3] h + Sqrt[2] j)/( 2 E^(-(h/Sqrt[3])) + 2 E^(h/Sqrt[3]) + E^(-(h/Sqrt[3]) - Sqrt[2] j) + E^(h/Sqrt[3] - Sqrt[2] j) + E^(-Sqrt[3] h + Sqrt[2] j) + E^(Sqrt[3] h + Sqrt[2] j))] + 1/10 Log[E^(Sqrt[3] h + Sqrt[2] j)/( 2 E^(-(h/Sqrt[3])) + 2 E^(h/Sqrt[3]) + E^(-(h/Sqrt[3]) - Sqrt[2] j) + E^(h/Sqrt[3] - Sqrt[2] j) + E^(-Sqrt[3] h + Sqrt[2] j) + E^(Sqrt[3] h + Sqrt[2] j))]; (* -1 makes more contours towards maximum *) contourFunc[n_, p_] := Function[{min, max}, range = max - min; Table[Exp[p (x - 1)] x range + min, {x, 0, 1, 1/n}] ]; cf = contourFunc[10, -1]; ContourPlot @@ {o, {j, -1, 1}, {h, -1, 1}, Contours -> cf} FindMaximum @@ {o, {{j, 0}, {h, 0}}, Method -> "Newton"} FindMaximum @@ {o, {{j, 0}, {h, 0}}, Method -> "PrincipalAxis"}
Note, I thought that maybe gradient being 0 in direction of one of the components was the problem, but if I perturb the initial point I still get the same warning, here's an example
o = 1/5 Log[E^(-(h/Sqrt[3]))/( 2 E^(-(h/Sqrt[3])) + 2 E^(h/Sqrt[3]) + E^(-(h/Sqrt[3]) - Sqrt[2] j) + E^(h/Sqrt[3] - Sqrt[2] j) + E^(-Sqrt[3] h + Sqrt[2] j) + E^(Sqrt[3] h + Sqrt[2] j))] + 1/5 Log[E^(h/Sqrt[3])/( 2 E^(-(h/Sqrt[3])) + 2 E^(h/Sqrt[3]) + E^(-(h/Sqrt[3]) - Sqrt[2] j) + E^(h/Sqrt[3] - Sqrt[2] j) + E^(-Sqrt[3] h + Sqrt[2] j) + E^(Sqrt[3] h + Sqrt[2] j))] + 1/10 Log[E^(-(h/Sqrt[3]) - Sqrt[2] j)/( 2 E^(-(h/Sqrt[3])) + 2 E^(h/Sqrt[3]) + E^(-(h/Sqrt[3]) - Sqrt[2] j) + E^(h/Sqrt[3] - Sqrt[2] j) + E^(-Sqrt[3] h + Sqrt[2] j) + E^(Sqrt[3] h + Sqrt[2] j))] + 3/10 Log[E^(h/Sqrt[3] - Sqrt[2] j)/( 2 E^(-(h/Sqrt[3])) + 2 E^(h/Sqrt[3]) + E^(-(h/Sqrt[3]) - Sqrt[2] j) + E^(h/Sqrt[3] - Sqrt[2] j) + E^(-Sqrt[3] h + Sqrt[2] j) + E^(Sqrt[3] h + Sqrt[2] j))] + 1/10 Log[E^(-Sqrt[3] h + Sqrt[2] j)/( 2 E^(-(h/Sqrt[3])) + 2 E^(h/Sqrt[3]) + E^(-(h/Sqrt[3]) - Sqrt[2] j) + E^(h/Sqrt[3] - Sqrt[2] j) + E^(-Sqrt[3] h + Sqrt[2] j) + E^(Sqrt[3] h + Sqrt[2] j))] + 1/10 Log[E^(Sqrt[3] h + Sqrt[2] j)/( 2 E^(-(h/Sqrt[3])) + 2 E^(h/Sqrt[3]) + E^(-(h/Sqrt[3]) - Sqrt[2] j) + E^(h/Sqrt[3] - Sqrt[2] j) + E^(-Sqrt[3] h + Sqrt[2] j) + E^(Sqrt[3] h + Sqrt[2] j))]; ContourPlot @@ {o, {j, -1, 1}, {h, -1, 1}} FindMaximum @@ {o, {{j, -0.008983550852535105`}, {h, 0.06931364191023386`}}, Method -> "Newton"}