This is the most awkward case of creating unit testable systems in .NET. I invariable end up adding a layer of abstraction over the component that I can't mock. Normally this is required for classes with inaccessible constructors (like this case), non-virtual methods or extension methods.
Here is the pattern I use (which I think is Adapter pattern) and is similar to what MVC team has done with all the RequestBase
/ResponseBase
classes to make them unit testable.
//Here is the original HttpClientCertificate class
//Not actual class, rather generated from metadata in Visual Studio
public class HttpClientCertificate : NameValueCollection {
public byte[] BinaryIssuer { get; }
public int CertEncoding { get; }
//other methods
//...
}
public class HttpClientCertificateBase {
private HttpClientCertificate m_cert;
public HttpClientCertificateBase(HttpClientCertificate cert) {
m_cert = cert;
}
public virtual byte[] BinaryIssuer { get{return m_cert.BinaryIssuer;} }
public virtual int CertEncoding { get{return m_cert.CertEncoding;} }
//other methods
//...
}
public class TestClass {
[TestMethod]
public void Test() {
//we can pass null as constructor argument, since the mocked class will never use it and mock methods will be called instead
var certMock = new Mock<HttpClientCertificate>(null);
certMock.Setup(cert=>cert.BinaryIssuer).Returns(new byte[1]);
}
}
In your code that uses HttpClientCertificate
you instead use HttpClientCertificateBase
, which you can instantiate like this - new HttpClientCertificateBase(httpClientCertificateInstance)
. This way you are creating a test surface for you to plug in mock objects.