You could use a Condition object. You can tell the threads to wait with cond.wait()
, and signal when the queues are ready with cond.notify_all()
. See, for example, Doug Hellman's wonderful Python Module of the Week blog. His code uses multiprocessing
; here I've adapted it for threading
:
import threading
import Queue
import time
def stage_1(cond,q1,q2):
"""perform first stage of work, then notify stage_2 to continue"""
with cond:
q1.put('car')
q2.put('bike')
print 'stage_1 done and ready for stage 2'
cond.notify_all()
def stage_2(cond,q):
"""wait for the condition telling us stage_1 is done"""
name=threading.current_thread().name
print 'Starting', name
with cond:
cond.wait()
print '%s running' % name
def run():
# http://www.doughellmann.com/PyMOTW/multiprocessing/communication.html#synchronizing-threads-with-a-condition-object
condition=threading.Condition()
queue_01=Queue.Queue()
queue_02=Queue.Queue()
s1=threading.Thread(name='s1', target=stage_1, args=(condition,queue_01,queue_02))
s2_clients=[
threading.Thread(name='stage_2[1]', target=stage_2, args=(condition,queue_01)),
threading.Thread(name='stage_2[2]', target=stage_2, args=(condition,queue_02)),
]
# Notice stage2 processes are started before stage1 process, and yet they wait
# until stage1 finishes
for c in s2_clients:
c.start()
time.sleep(1)
s1.start()
s1.join()
for c in s2_clients:
c.join()
run()
Running the script yields
Starting stage_2[1]
Starting stage_2[2]
stage_1 done and ready for stage 2 <-- Notice that stage2 is prevented from running until the queues have been packed.
stage_2[2] running
stage_2[1] running