$a = '35';
$b = '-34.99';
echo ($a + $b);
Results in 0.009999999999998
What is up with that? I wondered why my program kept reporting odd results.
Why doesn't PHP return the expected 0.01?
$a = '35';
$b = '-34.99';
echo ($a + $b);
Results in 0.009999999999998
What is up with that? I wondered why my program kept reporting odd results.
Why doesn't PHP return the expected 0.01?
Use PHP's round()
function: http://php.net/manual/en/function.round.php
This answer solves problem, but not explains why. I thought that it is obvious [I am also programming in C++, so it IS obvious for me ;]], but if not, let's say that PHP has it's own calculating precision and in that particular situation it returned most complying information regarding that calculation.
Because 0.01 can't be represented exactly as sum of series of binary fractions. And that is how floats are stored in memory.
I guess it is not what you want to hear, but it is answer to question. For how to fix see other answers.
Because floating point arithmetic != real number arithmetic. An illustration of the difference due to imprecision is, for some floats a
and b
, (a+b)-b != a
. This applies to any language using floats. See an example in Python.
Since floating point are binary numbers with finite precision, there's a finite amount of representable numbers, which leads accuracy problems and surprises like this. Here's another interesting read: What Every Computer Scientist Should Know About Floating-Point Arithmetic.
Back to your problem, basically there is no way to accurately represent 34.99 or 0.01 in binary (just like in decimal, 1/3 = 0.3333...), so approximations are used instead. To get around the problem, you can:
Use round($result, 2)
on the result to round it to 2 decimal places.
Use integers. If that's currency, store them as 3500 and 3499. Then divide the result by 100.
It's a pity that PHP doesn't have a decimal datatype like other languages do.
my php returns 0.01...
maybe it have todo with php version, (i using 5.2)
Floating point numbers, like all numbers, must be stored in memory as a string of 0's and 1's. It's all bits to the computer. How floating point differs from integer is in how we interpret the 0's and 1's when we want to look at them.
One bit is the "sign" (0 = positive, 1 = negative), 8 bits are the exponent (ranging from -128 to +127), 23 bits are the number known as the "mantissa". So the binary representation of (S1)(P8)(M23) has the value (-1^S)M*2^P
The "mantissa" takes on a special form. In normal scientific notation we display the "one's place" along with the fraction. For instance:
4.39 x 10^3 = 439
In binary the "one's place" is a single bit. Since we ignore all the left-most 0's in scientific notation (we ignore any insignificant figures) the first bit is guaranteed to be a 1
1.101 x 2^4 = 1101 = 13
Since we are guaranteed that the first bit will be a 1, we remove this bit when storing the number to save space. So the above number is stored as just 101 (for the mantissa). The leading 1 is assumed
As an example, let's take the binary string
00000010011011000000000000000000
Breaking it into it's components:
Sign Power Mantissa
0 00000100 10110000000000000000000
+ +4 1.1011
+ +4 1 + .5 + .125 + .0625
+ +4 1.6875
Applying our simple formula:
(-1^S)M*2^P
(-1^0)(1.6875)*2^(+4)
(1)(1.6875)*(16)
27
In other words, 00000010011011000000000000000000 is 27 in floating point (according to IEEE-754 standards).
For many numbers there is exact binary representation, however. Much like how 1/3 = 0.333.... repeating forever, 1/100 is 0.00000010100011110101110000..... with a repeating "10100011110101110000". A 32-bit computer can't store the entire number in floating point, however. So it makes its best guess.
0.0000001010001111010111000010100011110101110000
Sign Power Mantissa
+ -7 1.01000111101011100001010
0 -00000111 01000111101011100001010
0 11111001 01000111101011100001010
01111100101000111101011100001010
(note that negative 7 is produced using 2's complement)
It should be immediately clear that 01111100101000111101011100001010 looks nothing like 0.01
More importantly, however, this contains a truncated version of a repeating decimal. The original decimal contained a repeating "10100011110101110000". We've simplified this to 01000111101011100001010
Translating this floating point number back into decimal via our formula we get 0.0099999979 (note that this is for a 32-bit computer. A 64-bit computer would have much more accuracy)
When the Operating System sees a number like this, it has to determine if it should use the number as it sees it, or if it should round to a more meaningful number. Most computers will use the number as it's stored, since this is considered "safer". Some computers, however (Windows does this, I believe) will "round" to the nearest "simple" decimal number. In this case, 0.01 looks like a good candidate.
There's plenty of answers here about why floating point numbers work the way they do...
But there's little talk of arbitrary precision (Pickle mentioned it). If you want (or need) exact precision, the only way to do it (for rational numbers at least) is to use the BC Math extension (which is really just a BigNum, Arbitrary Precision implementation...
To add two numbers:
$number = '12345678901234.1234567890';
$number2 = '1';
echo bcadd($number, $number2);
will result in 12345678901235.1234567890
...
This is called arbitrary precision math. Basically all numbers are strings which are parsed for every operation and operations are performed on a digit by digit basis (think long division, but done by the library). So that means it's quite slow (in comparison to regular math constructs). But it's very powerful. You can multiply, add, subtract, divide, find modulo and exponentiate any number that has an exact string representation.
So you can't do 1/3
with 100% accuracy, since it has a repeating decimal (and hence isn't rational).
But, if you want to know what 1500.0015
squared is:
Using 32 bit floats (double precision) gives the estimated result of:
2250004.5000023
But bcmath gives the exact answer of:
2250004.50000225
It all depends on the precision you need.
Also, something else to note here. PHP can only represent either 32 bit or 64 bit integers (depending on your install). So if an integer exceeds the size of the native int type (2.1 billion for 32bit, 9.2 x10^18, or 9.2 billion billion for signed ints), PHP will convert the int into a float. While that's not immediately a problem (Since all ints smaller than the precision of the system's float are by definition directly representable as floats), if you try multiplying two together, it'll lose significant precision.
For example, given $n = '40000000002'
:
As a number, $n
will be float(40000000002)
, which is fine since it's exactly represented. But if we square it, we get: float(1.60000000016E+21)
As a string (using BC math), $n
will be exactly '40000000002'
. And if we square it, we get: string(22) "1600000000160000000004"
...
So if you need the precision with large numbers, or rational decimal points, you might want to look into bcmath...