Let's do this from the code. First, a small rewrite:
object & { def unapply[A](a: A) = Some(a, a) }
"Julie" match {
// case Brothers(_) & Sisters(_) => "Julie has both brother(s) and sister(s)"
case &(Brothers(_), Sisters(_)) => "Julie has both brother(s) and sister(s)"
case Siblings(_) => "Julie's siblings are all the same sex"
case _ => "Julie has no siblings"
}
The new rewrite means exactly the same thing. The comment line is using infix notation for extractors, and the second is using normal notation. They both translate to the same thing.
So, Scala will feed "Julie" to the extractor, repeatedly, until all unbound variables got assigned to Some
thing. The first extractor is &
, so we get this:
&.unapply("Julie") == Some(("Julie", "Julie"))
We got Some
back, so we can proceed with the match. Now we have a tuple of two elements, and we have two extractors inside &
as well, so we feed each element of the tuple to each extractor:
Brothers.unapply("Julie") == ?
Sisters.unapply("Julie") == ?
If both of these return Some
thing, then the match is succesful. Just for fun, let's rewrite this code without pattern matching:
val pattern = "Julie"
val extractor1 = &.unapply(pattern)
if (extractor1.nonEmpty && extractor1.get.isInstanceOf[Tuple2]) {
val extractor11 = Brothers.unapply(extractor1.get._1)
val extractor12 = Sisters.unapply(extractor1.get._2)
if (extractor11.nonEmpty && extractor12.nonEmpty) {
"Julie has both brother(s) and sister(s)"
} else {
"Test Siblings and default case, but I'll skip it here to avoid repetition"
}
} else {
val extractor2 = Siblings.unapply(pattern)
if (extractor2.nonEmpty) {
"Julie's siblings are all the same sex"
} else {
"Julie has no siblings"
}
Ugly looking code, even without optimizing to only get extractor12
if extractor11
isn't empty, and without the code repetition that should have gone where there's a comment. So I'll write it in yet another style:
val pattern = "Julie"
& unapply pattern filter (_.isInstanceOf[Tuple2]) flatMap { pattern1 =>
Brothers unapply pattern1._1 flatMap { _ =>
Sisters unapply pattern1._2 flatMap { _ =>
"Julie has both brother(s) and sister(s)"
}
}
} getOrElse {
Siblings unapply pattern map { _ =>
"Julie's siblings are all the same sex"
} getOrElse {
"Julie has no siblings"
}
}
The pattern of flatMap
/map
at the beginning suggests yet another way of writing this:
val pattern = "Julie"
(
for {
pattern1 <- & unapply pattern
if pattern1.isInstanceOf[Tuple2]
_ <- Brothers unapply pattern1._1
_ <- Sisters unapply pattern1._2
} yield "Julie has both brother(s) and sister(s)
) getOrElse (
for {
_ <- Siblings unapply pattern
} yield "Julie's siblings are all the same sex"
) getOrElse (
"julie has no siblings"
)
You should be able to run all this code and see the results for yourself.