Take the following with a grain of salt, since I don't have first-person experience with pathfinding.
That being said, there are likely to be different approaches, but I think standard graph-search methods, notably (variants of) A* are perfectly reasonable for strategy games. Most strategy games I know seem to be based on a tile system, where the map is comprised of little squares, which are easily mapped to a graph. One example would be StarCraft II (Screenshot), which I'll keep using as an example in the remainder of this answer, because I'm most familiar with it.
While A* can be used for real-time strategy games, there are a few drawbacks that have to be overcome by tweaks to the core algorithm:
A* is too slow
Since an RTS is by definion "real time", waiting for the computation to finish will frustrate the player, because the units will lag. This can be remedied in several ways. One is to use Multi-tiered A*, which computes a rough course before taking smaller obstacles into account. Another obvious optimization is to group units heading to the same destination into a platoon and only calculate one path for all of them.
Instead of the naive approach of making every single tile a node in the graph, one could also build a navigation mesh, which has fewer nodes and could be searched faster – this requires tweaking the search algorithm a little, but it would still be A* at the core.
A* is static
A* works on a static graph, so what to do when the landscape changes? I don't know how this is done in actual games, but I imagine the pathing is done repeatedly to cope with new obstacles or removed obstacles. Maybe they are using an inremental version of A* (PDF).
To see a demonstration of StarCraft II coping with this, go to 7:50 in this video.
A* has perfect information
A part of many RTS games is unexplored terrain. Since you can't see the terrain, your units shouldn't know where to walk either, but often they do anyway. One approach is to penalize walking through unexplored terrain, so units are more reluctant to take advantage of their omniscience, another is to take the omniscience away and just assume unexplored terrain is walkable. This can result in the units stumbling into dead ends, sometimes ones that are obvious to the player, until they finally explore a path to the target.
Fog of War is another aspect of this. For example, in StarCraft 2 there are destructible obstacles on the map. It has been shown that you can order a unit to move to the enemy base, and it will start down a different path if the obstacle has already been destroyed by your opponent, thus giving you information you should not actually have.
To summarize: You can use standard algorithms, but you may have to use them cleverly. And as a last bonus: I have found Amit’s Game Programming Information interesting with regard to pathing. It also has links to further discussion of the problem.