If you need many array manipulation, then numpy is the best choice in python
>>> import numpy
>>> data = numpy.array([(2, 4, 8), (3, 6, 5), (7, 5, 2)])
>>> data
array([[2, 4, 8],
[3, 6, 5],
[7, 5, 2]])
>>> data.sum() # product of all elements
42
>>> data.sum(axis=1) # sum of elements in rows
array([14, 14, 14])
>>> data.sum(axis=0) # sum of elements in columns
array([12, 15, 15])
>>> numpy.product(data, axis=1) # product of elements in rows
array([64, 90, 70])
>>> numpy.product(data, axis=0) # product of elements in columns
array([ 42, 120, 80])
>>> numpy.product(data) # product of all elements
403200
or element wise operation with arrays
>>> x,y,z = map(numpy.array,[(2, 4, 8), (3, 6, 5), (7, 5, 2)])
>>> x
array([2, 4, 8])
>>> y
array([3, 6, 5])
>>> z
array([7, 5, 2])
>>> x*y
array([ 6, 24, 40])
>>> x*y*z
array([ 42, 120, 80])
>>> x+y+z
array([12, 15, 15])
element wise mathematical operations, e.g.
>>> numpy.log(data)
array([[ 0.69314718, 1.38629436, 2.07944154],
[ 1.09861229, 1.79175947, 1.60943791],
[ 1.94591015, 1.60943791, 0.69314718]])
>>> numpy.exp(x)
array([ 7.3890561 , 54.59815003, 2980.95798704])