views:

306

answers:

1

I have implemented a wcf service and now, my client wants it to have three copies of it, working independently on different machines. A master-slave approach. I need to find a solution that will enable behavior:

the first service that is instantiated "asks" the other two "if they are alive?" - if no, then it becomes a master and it is the one that is active on the net. The other two, once instantiated see that there is already a master alive, so they became slaves and start sleeping. There needs to be some mechanisms to periodically check if master is not dead and if so, choses the next copy that is alive to became a master (until it becomes dead respectively)

This i think should be a kind of an architectural pattern, so I would be more than glad to be given any advices.

thanks

+1  A: 

I would suggest looking at the WCF peer channel (System.Net.PeerToPeer) to facilitate each node knowing about the other nodes. Here is a link that offers a decent introduction.

As for determining which node should be the master, the trick will be negotiating which node should be the master if two or more nodes come online at about the same time. Once the nodes become aware of each other, there needs to be some deterministic mechanism for establishing the master. For example, you could use the earliest creation time, the lowest value of the last octet of each node's IP address, or anything really. You'll just need to define some scheme that allows the nodes to negotiate this automatically.

Finally, as for checking if the master is still alive, I would suggest using the event-based mechanism described here. The master could send out periodic health-and-status events that the other nodes would register for. I'd put a try/catch/finally block at the code entry point so that if the master were to crash, it could publish one final MasterClosing event to let the slaves know it's going away. What this does not account for is a system crash, e.g., power failure, etc. To handle this, provide a timeout in the slaves so that when the timeout expires, the slaves can query the master to see if it's still there. If not, the slaves can negotiate between themselves using your deterministic algorithm about who should be the next master.

Matt Davis