I have this massive array of ints from 0-4 in this triangle. I am trying to learn dynamic programming with Ruby and would like some assistance in calculating the number of paths in the triangle that meet three criterion:
- You must start at one of the zero points in the row with 70 elements.
- Your path can be directly above you one row (if there is a number directly above) or one row up heading diagonal to the left. One of these options is always available
- The sum of the path you take to get to the zero on the first row must add up to 140.
Example, start at the second zero in the bottom row. You can move directly up to the one or diagonal left to the 4. In either case, the number you arrive at must be added to the running count of all the numbers you have visited. From the 1 you can travel to a 2 (running sum = 3) directly above or to the 0 (running sum = 1) diagonal to the left.
0
41
302
2413
13024
024130
4130241
30241302
241302413
1302413024
02413024130
413024130241
3024130241302
24130241302413
130241302413024
0241302413024130
41302413024130241
302413024130241302
2413024130241302413
13024130241302413024
024130241302413024130
4130241302413024130241
30241302413024130241302
241302413024130241302413
1302413024130241302413024
02413024130241302413024130
413024130241302413024130241
3024130241302413024130241302
24130241302413024130241302413
130241302413024130241302413024
0241302413024130241302413024130
41302413024130241302413024130241
302413024130241302413024130241302
2413024130241302413024130241302413
13024130241302413024130241302413024
024130241302413024130241302413024130
4130241302413024130241302413024130241
30241302413024130241302413024130241302
241302413024130241302413024130241302413
1302413024130241302413024130241302413024
02413024130241302413024130241302413024130
413024130241302413024130241302413024130241
3024130241302413024130241302413024130241302
24130241302413024130241302413024130241302413
130241302413024130241302413024130241302413024
0241302413024130241302413024130241302413024130
41302413024130241302413024130241302413024130241
302413024130241302413024130241302413024130241302
2413024130241302413024130241302413024130241302413
13024130241302413024130241302413024130241302413024
024130241302413024130241302413024130241302413024130
4130241302413024130241302413024130241302413024130241
30241302413024130241302413024130241302413024130241302
241302413024130241302413024130241302413024130241302413
1302413024130241302413024130241302413024130241302413024
02413024130241302413024130241302413024130241302413024130
413024130241302413024130241302413024130241302413024130241
3024130241302413024130241302413024130241302413024130241302
24130241302413024130241302413024130241302413024130241302413
130241302413024130241302413024130241302413024130241302413024
0241302413024130241302413024130241302413024130241302413024130
41302413024130241302413024130241302413024130241302413024130241
302413024130241302413024130241302413024130241302413024130241302
2413024130241302413024130241302413024130241302413024130241302413
13024130241302413024130241302413024130241302413024130241302413024
024130241302413024130241302413024130241302413024130241302413024130
4130241302413024130241302413024130241302413024130241302413024130241
30241302413024130241302413024130241302413024130241302413024130241302
241302413024130241302413024130241302413024130241302413024130241302413
1302413024130241302413024130241302413024130241302413024130241302413024
02413024130241302413024130241302413024130241302413024130241302413024130