views:

630

answers:

2

I am writing a text renderer for an OpenGL application. Size, colour, font face, and anti-aliasing can be twiddled at run time (and so multiple font faces can appear on the screen at once). There are too many combinations to allocate one texture to each combination of string and attributes. However, only a small subset of the entire database of strings will be on the screen at any given time.

This leads me into the opportunity to create a cache for the strings that are being printed frame after frame. It has been mandated that I use only one texture for the entire operation, as creating a cache of many textures would incur a texture swapping penalty for every different string printed from the cache.

So I have before me a 2048x2048 texture, into which I can place whatever strings I can fit as they are being requested by the application for caching purposes. I have quickly realized that tracking the free space available in a two dimensional space is not trivial.

I have been looking at things like Best Fit and Next fit, but those seem to be suitable for 1d spaces.

How can I manage this cache texture in OpenGL?

Edit: I have since learned that this is an instance of a "2d packing problem".

+1  A: 

What you have is the bin-packing problem.

Bad news first: It's NP-hard, so it's worth to find the optimal solution.

I've done such texture-caching for fonts as well. I didn't cached entire words but just the glyph images. That makes things a lot easier because all your images are roughly square-shaped. A simple grid based approach to keep track of the texture-memory worked pretty good.

In case I got glyphs that are larger than one of my grid-boxes I just allocated two or more boxes using brute force search (it didn't happend that often). In case I didn't found any suitable block I just randomly removed some glyphs from the cache to make free space.

That was much easier than keeping things in a last recently used cache and performed nearly as good.

Btw - you will always have some waste on texture memory for such a cache. Unless you're very tight on memory that shouldn't be a problem. You should use a small texture-format (8 bit alpha works well for fonts).

Also: If you make your grid-blocks a multiple of 8 pixels, and you can drop your antialiasing to 4 bits you can compress the glyphs into one of the compressed DXT or S3TC formats on the fly. The wasted texture-space becomes a non-issue that way.

Nils Pipenbrinck
A: 

I have opted to use a simple approach. Divide the texture into variable height rows. The first texture to be placed in a row decides the height of the row. If a texture can fit into an existing row by height, check to see if there is enough width remaining and place it there. Otherwise start a new row. If a new row cannot be started, do not cache the string.

Martin