I saw a question on reverse projecting 4 2D points to derive the corners of a rectangle in 3D space. I have a kind of more general version of the same problem:
Given either a focal length (which can be solved to produce arcseconds / pixel) or the intrinsic camera matrix (a 3x2 matrix that defines the properties of the pinhole camera model being used - it's directly related to focal length), compute the camera ray that goes through each pixel.
I'd like to take a series of frames, derive the candidate light rays from each frame, and use some sort of iterative solving approach to derive the camera pose from each frame (given a sufficiently large sample, of course)... All of that is really just massively-parallel implementations of a generalized Hough algorithm... it's getting the candidate rays in the first place that I'm having the problem with...